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PREFACE

This book is in part a consequence of a long series of irritations on the
part of the senior author. During the course of years he cncountered
t0o often tables of unsmoeothed values, tables without deseriptive legends
or with inadequate legends, graphs with poorly chosen coordin@te
seales, graphs without accompanying descriptive legends and oceagion-
ally without indication as to what the coordinates themse]}:éé\fépre-
sented, references to the significance of a so-called knee of a curve when
the location of the knee was a function of the chosen cogrdinate scales,
lack of understanding of how to determine, to expresgy and to apply
precision indexes, blind faith in a lcast squares gohiputation regardless
of the assumptions and limitations, and many othér faults which may
be remedied with reasonable effort. For sevetal“years, this author has
offered a course for graduate students entit-lcQ\Treatmnt of Experimental
Daia in which sueh matfers among Uthers have been discusscd. The
present textbook is an outgrowth of trhat COUTSE,

This book has been wntt;éﬁ”ﬂ&ﬁﬁ"ﬁ‘t@ btaysicsg ithe chemist, and the
engineer in mind. The authomfeel that, for a very large percentage of
them, the book has a worthswhile message. Although obviously the
discussions are necessarily¥\rather mathematical, considerable effort
hasg been made to kecp\gﬁyéica-l gituations in mind throughout.

We have generally steered away from the statistical treatment of
quantiwm mechayi€d;on the onc hand and of business and educational
theory on the oiaher hand, We do, however, include a chapter on
correlation. ¢

As deteh&mants shorten. and simplify many treatments, they have
been used in discussions wherever convenient. Recognizing, however,
th,a\t n’tany users of this text may need to have their memories refreshed
with regard to methods of use, A Brigf Discussion of Determinant
Methods has been included as Appendix 1. In the discussion there given,
particular attention has been paid to the processes of setting up, simpli-
fying, and evaluating and to their application in solving simultaneous
equations and in determining the equations of curves. The convenience
obtsined and the time saved by the use of determinants should be
better known.

The text, despite much care, probably contains many ctrors. Some
of them undoubtedly reflect lack of knowledge on the part of the authors,

bkt



iv PREFACE

others have crept in by various paths. Whatever their origins, is is
hoped that those who discover them will be kind enough to notify the
authors.

A. G. WorTmHINnG

JosErH (GEFFNER
Prrrsnurca, Pa.
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SYMBOLS FREQUENTLY USED IN DISCUSSIONS OF
METHOD TOGETHER WITH THEIR MEANINGS

[8ymbols poncerned with Fourier Series expunsions are defined at appropriate pluces in Chapter VI
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Frequency of ocewrrence of a particular value in a serieg™of
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. - v N
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CHAPTER 1
REPRESENTATION OF DATA BY TABLES

1, Introduction. All of us, whether we realize it or not, are contin-
ually making measurements. Such actions as noting the time of day,
welghmg oneself, and fecling the temperature of a tub of Water with
one’s hand or foot are typical commonplace observations. Usua-ﬂy~the
results of such observations arc easily obtained, of little cong’equence,
and soon forgotten. However, measurements made by a taklar in fitting
a suit of clothes, a physician in diagnosing a disease, of?a* physieist in
measuring the speed of light are of greatcr significange, Here the accu-
racy of the measurements is a matter of coneern; and it is often neces-
sary that the measurements be analyzed to ebtdin the desired final
result. It is usually important that the resiflid’be preserved, at least
temporazrily; and it is desirable to present $hem in a form eonvenient for
use and readily understood by others. \Ji"is with such problems that
this book is concerned. — dbrauhbl rary.org.in

All data, unless scattered, are eneOuntered and dealt with in the form
of tables, graphs, or equationg, ™It is appropriate, therefore, that we
begin with a discussion of fitese three devices for representing data,
pointing out the advantages’and disadvantages of each, describing the
rules for their proper u%e and lustrating the applications for which
cach is best suited. Sinte original data are usually first tabulated, then
graphed, and finallperhaps expressed as equations, we consider first
the methods and’principles of tabular representation.

All measﬁx@ni’ents involve at least two variables, one assumed inde-
pendent ‘aﬁd\the other dependent. In the simplest measurements, the
indepondent variable is ignored. Thus, recognizing the fact that apples,
ondstanding, lose weight by evaporation of water through the skins, we
mayYconsider the weight of a bag of apples as a funetion of the time
elapsed since picking. Generally, though, the observation that a bag
of apples weighs 5 pounds contains all the information desired; it adds
nothing to specify the time, the independent variable. More often, we
are interested in hoth dependent and independent variables, and fre-
quently in the relationship between them. In the tabular representa-
tion of data, the assumed dependent and independent variables and their
relutionship—if one exists—arc expressed by listing corresponding values

1



2 REPRESENTATION OF DATA BY TABLES

or properties of the variables in an orderly arrangement. As illustrated
by newspapcr radic programs, stock-market reports, railroad timetables,
logarithm tables, and trigonometric tables, therc are many types.

In this chapter we shall first diseuss the general advantages of tables,
and then give the structural forms of each of three types. Specific rules
are included for the construetion of the one showing ¥ = f(z), together
with two simple methods of smoothing data. The important problem
of interpolation is discussed, and several interpolation formulas are de-
veloped and illustrated. The chapter concludes with a discussion of
extrapolation. .

2. Advantages of Tables. In faver of tables generally, it ma¥ be said
that .(a) they are simple and inexpensive fo construct,{Tequiring no
special types of paper, eurve forms, ete.; () they permii;easy reference
to data; (¢) they facilitate comparisons of values, g {d) they provide
a compaet form for filing, In certain applications they possess special
advantages. 'Thus, a table may show variations for several dependent
variables as satisfactorily as for just one. At would be difficult to pre-
sent the same data on a single graph without confusion. The table is
generally preferable to the graph for\presenting data which may he
classified and subclassified in varioys ways. Finally, when the table is
of the type showing y = f(z), the,g'{enient f(x} can often be differentiated
or integrated directly  from the™t: the desired accuracy without
knowledge of its gﬂ%%ﬁ%ﬂ"i&iﬁéﬂ%%%?ﬁ%%ﬁ%ﬁ'iﬂl less labor than isy involved
when & graph is used. R

3. Types of Tab!es.&f\]‘ables may be grouped into three general
classes. The first and least important class—the qualitative class—
confains those tables which relate quantities in a qualitative way.
Table I is a fypiéal example. Its construction and interpretation are
suﬁiciently.siﬂ‘iplc te require no explanation. The oceurrence of the
qualitatisie ¥able is relatively infroquent despite the fact that it contains
data whieh cannot be well presented in any other way.

T\.ﬁg‘ second class of tables—the statistical class—contains tables in
) w@ich some of the variables are expressed quantitatively, while others,

usually including the variable assumed independent, are not. (Sce
Table II.) This class includes most statistical tables such
the Werld Almanac and U. 8, Census reports,
the periodic table of the chemical elemoents.

-The third class of tables—the functional class—is composed of tables
whlf:h show one or more relations of the type y = f(z). Table TII is a
typical example. .

We are here principally concerned with the construetion and inter-
pretation of tables of the second and third classes,

as those in
tables of equivalents, and



TYPES OF TABLES

TABLE I, AN ExaMmPLE oF THE QUALITATIVE TyPE or TABLE

Purallelism of Physical Theories !

THEQORIES OF LIGHT
1. Corpuscular Theory:
Corpuseles obey Newton's laws of me-
chanics.

2. Modified Corpusculor Theory of Planck
and Einstetn:

Quantum laws govern the hebavior of
photons.

3. Wave Theory.

Theory deals with continuous wWaves,
¥iclding interference and diffraction ef-
fects. Standing waves produced by in-
terference eorrespond to quantization.
No mention of particles,

4. Einstein's 'Ghost Field” Interpretalion:
Interpretation reconciles corpuscular
and wave theorics .

| 1.

|

THEORTIES OF MATTER

Corpuscular Theory:
Particles obey Newton's laws of me-
chanics.

2. Modified Corpuscular Theory of Hei-
senberg:

Quantum laws govern the behavior of
particles.

3. Wave Theory: ,\:\
Theory deals with continuous,waves,
yielding interforence and diffraetion ef-
feets. Quantization , eorrssponds to
standing waves. No mx'nﬁrun of particles
in certain extreme fmﬁg. of the theory.

4. Born's Probabiliy Interpremtwn
Interprctatgtm reconciles corpuscular
and wave tthmes,

1 Physics Staff of the University of Pittsburgh, dn Gutline of“immm Fhysies, p. 142, 2nd Ed., New

Yuork, John Wiley & Sons, 1937,

TAGRLE II. Ax Ex‘amﬁtﬁ‘ﬁﬁdﬁ*ﬁw@i@;‘ﬁ@ﬁﬂﬁ’f‘}m oF TABLE

Ceriain Elements of{fm Solar System !

Meun Dist. P@ﬁs}! Mass 1Me:?,n Relative
Name from Bun ¢ &N ———————— 1 {pecifie Burface
in 10° Km. | \Q\\ cars | Mass of Easth Gravity Gravity
A<
Sun PR © 2 331950 1.41 27.89
Moon 149) ........ 0.012261 3.33 0.165
Mercury \057.85 0. 2408 0.04 3.8 0.27
Venus {Mos. 10 0.6152 0.81 4.86 0.85
Earth S 149,45 1.0000 1.000 5.52 1,00
Mars . 227.72 1.8808 0.108 3.96 0.38
creé\ 413,58 4.6035 0.00012 3.3(%) 0.037(1
Eros 217.94 17610 | oL, 3.3(7) 0.001(7)
Jupiter 777.6 11,862 316.04 1.84 2.64
Saturn 1425.6 20.457 094.9 0.71 1.17
Lranus 2868, 1 84.013 14.66 1.27 0.92
Neptune 4494.1 164.783 17.16 1.58 1.12
Pluto 5937. 247.7 0.8 | ... | ..
|

! RBussell, H. N, Dugan, IL. %, and Stewsrt, J. Q.,

Astronomy, Boston, Ginn & Co., 1524, Data

relating to Pluto have hoen taken from other sourees,



4 REPRESENTATION OF DATA BY TABLES

TABLE IIT
AN Examri® o¥ THE Furcerioxan TYrE or TABLE

Some Properties of Compressed Hydrogen at 0° (' !

2. # d 72 Cp ‘ Cy
aim em®/mole gm/1 atm eal/mole K°

200 127.1 15.86 227 .4 7.07 401
300 890.12 22.37 365.1 7.14 d\G4
400 71.62 28.14 821.6 7.19 { ‘\4,98
500 60, 56 33.28 6599.2 7.22 p 500
600 83.19 37.90 900.2 7.24,’ \, 5.4

1 Deming, W. E,, and Shupe, Lola E., Phys, Ren., 40, 860 (1932) &P
2 The symbal *f" ztands for fugarity, v “‘,'\

4, The Statistical Class of Tables, The encral form of the statistical
table and the names of its various parts atQx shiown in the following plan:

% 3
NS

TABLE NUMBER
www.dbraulib ra}'ﬂ‘mt@ in

SN g

< Box Heading
Stub Heading {_J=—

X\
N N Column Heading Column Heading

\Y;
‘%ub item Ttem Ttem
:"\S ub item Itém Ttem
,\\~ Stub item Ttem Ttem
A\ Stub item Ttery,

e

e e E
N/ (@ The Title. The titlo of a table should describe its contents briefly.
It should be clear, requiring no reference to the context. It should be
fzomplete, telling what is listed, the source of the data if not original or
if not widely published already, and possibly the date and the scheme
of classification. Such phrases as “A Table Showing the Relationship

Betii‘veen L shc:uld ordinarily be omitted. Tf completeness must be
saerificed for brevity, the hecessary descriptive material may be added
a3 separate sentences in a headn

ote below the title pro
noteé to the table, praper or as a foot-



THE STATISTICAL CLASS OF TABLES 5

(by The Stub. The first column at the left, the stub, lists the separate
eatogorios or values of the assumed independent variable, Like all col-
umns, the stub should have a deseriptive heading naming the quantity
listed and its unite if expressed numerically, An exeeption is a stuib that
containg heterogeneous ilems not classifishle under a single class name.

The choice of independent variable for tabulation is often arbitrary.
When the stub is not quantitative the most appropriate order of enter-
ing the discrete line headings depends on the purpose of the table. The
alphabetical order is convenient for locating a particular heading, Some
suggestions follow. Q)

L. Geographieal, chronological, and magnitude subdivisiong afe
often listed in the stub. ' "\

2. Stub items within any subdivision of the stub or withif the stub
as a whole should be listed in some logical classified arder based on
geographical loeation, time, magnitude, or other qqalfﬁha-tion.

3. It is usually easier to accommodate a long phtase in a stub than
in a column heading, N\

4, It is usually easicr to aceommodate q{{bng list of values in a
vertical column than in a horizontal lines(\/

(e) The Columns. Each eolumn shgg{fi have a heading naming the
quantity listed and, if appropriate; dhsamdibsurpdin dxpressing the values
tabulated. Abbreviations or symbols should be used only when their
meanings are clear. o~

In many tables, certain of«the column headings as a group represent
subclassifications of a mo(e\‘g'e’neral quantity named in & box heading.
All such subclassifications should be both all-inclusive and mutually
exclugive. <

(d} The Items.,. I the body of a table, numerical items should be
arranged so that #he decimal points are vertivally aligned in each col-
1. Valug&h&iﬁreaaed numerically should generally show zeros to the
left of thesdeeimal point in all uneertain places except that which con-
tains,“thé\.fﬁrst uncertain digit. To the right of the decimal point a
zeroN(Q) ss the first uncertain digit should not be omitted. Whenever
the total for a group of individual items of one of the columns is given,
it should preferably appear at the top of the group. Note that a zero (0)
entry may and should have a meaning different from that of a blank
space. A blank space should mean that information is lacking, a zero
that the item has zero value. Sometimes a dash (—) is used fo indicate
that an item is negligible compared with the other items in the column.
This iz not desirable since it sometimes indicates lack of data. The
question of significant figures is discussed under the functional table.
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5. The Functional Class of Tables. Inthefunctional table, eorrespond-
ing values of the independent (z) and dependent () variabh?s are listed
side by side. Every functional table should have a title which is clear,
complete, and vet brief. Desired cxplanatory material, acknowledg-
ment of souree and references should follow, The form of the fable is
the same as that of the statistical table with the independent variable
listed in the stub. Each eolumn in the table should have a heading
giving the name and the unit of the quantity listed. In the choice of
the independent variable, z, the functional table is usually Jess arbi-
trary than the statistical table. The final decision must be based og the
nature of the data and the purpose of the table. However, the yariable
so chosen should be a simple quantity, such as time, tempem}mrc, or
distance, rather than a complex one such as might be desirable in plot-
ting the same data. Jf the complex quantity has sorn¢ special signifi-
cance its values may be listed In a separate colunm\':;m'onc of the de-
pendent variables. \/

(@) Choice of the z-Inferval. In constructing the table, one should
usually (but not always) list rounded or otwr‘msc convenient values of
@ in order of incrcasing (or, occasionally, ‘dgcreasing) size, with sucees-
give values differing by a constant ameunt, Az, called the common
difference or z-interval. Since z-valugd are rounded, Az is usually 1, 2,
or 5 multiplied bﬁfj‘ﬂbﬁ:‘.ﬂx‘%’ I;*? isahnteger. The particular value for
Az in a given cage usually r;pméénts a compromise between too small
a value, which leads to an ynrecessarily long table, tedious to construct,
and too large a value, hich leads to too short a table and to too fre-
quent and difficult ::Ln\be}pulations in use. For purposes of summations
and finding rates of ehange, the smaller the Az, the more accurate the
results. A reagenable type of cxception to the above indicated equal
suceessive diffefénee listing is that in which the successive ratios of
z-values‘afe Jeonstant.

(b)‘;S'?}bothing the Data. For a table to be of greatest service the
y-values corresponding to the tabulated w-values should generally be

p ergadthtzd or graduated; i.e., the successive variations in y with succes-
sive equal variations in x should be made to vary gradually. In a truly
statistical table, this smoothing process is without significance and
should not be attempted.

Given an unsmoothed table of values of y = f(z), values for a
Smrllothgd table may be obtained (1) from an equation of y = flx)

which fits the data available, (2) from a graph of y = flz) drawn to
fit the da.ta, (3)‘from an arbitrary, numecrical procedure, or (4) from a
Ig;;g}:()ihvoii item d)fferenc?s. The two last-named methods involve tabu-
alues of x and ¥ in a regularly constructed but unsmoothed tabile.
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Tf cither of the first two methods is employed, the details of procedure
and the results will depend somewhat on the smoother’s idea as to what
the real y = f(x) is like; and a table thus smoothed may possibly be
inferior to the unsmoothed table. Wherever the smoothing operation
is carried through, it should always be with the purpose in mind of
maintaining unchanged the general trend of the unsmoothed data and
their approximate magnitudes.

Where the relation y = f(x) is known, no smoothing process is in-
volved. One is merely concerned with listing correetly computed values.
Likewisc, where an empirical relation has becn found which maintains
the general trend of the listed items as well as their approximate magni-
tudes, the procedure, which now may be classed technically as smooth-
ing, is similar and obvious. Methods for finding such empiﬁcﬁl equa-
tions are given in Chapter 111 N

The second-named or graphical method of smoothin% cf{)nsists of plot-
ting the available data, or perhaps only a portion af\b time, [itting a
smooth curve, and reading the smoothed y-valuessbiierefrom. Plotting
procedure is discussed elsewliere. N

Many methods characterized by arbitrapy, nitimerical procedure are
possible. A method sometimes used is ohg' based on a least-squares
relation to be derived later. It assumeé’a"consta,nt value for Az and a
parabolic function for y = f(m)vw;ﬂinhitﬁbdaﬁhm{pgﬂm to a logical con-
clusion, it will usually give satisfa}ztory results. The method should
not he used, however, unless ower the range of four Az-intervals there is
a reasonably close approximation to a parabolic relationship of the
assumed type. The bm{a\ equation for this method is

o = i + 120 + 1) — 3 + y-)] (1]

where y_z, Y1540 "1, and yg are five successive tabulated y-values and
@ is the smedthed value of yo which should replace , in the smoothed
table. Aghally much time and effort may be gaved in applying Eq. 1
if & tpqip‘brary shift of origin to (0,7) i& made. In the new system,
yobogemes 0. Using a’, y'1, ¥ a1, ete., for the new a and y items, Eq. 1
changes to ' '

o = 5 (120 + 3/ o) — 3W2 + ¥ 2] [1a]

of which the sums (/4 + ¥ —1) and {2 + ¥ —2) will normally be small
in magnitude. The 4’ obtained on this busis represents a correction to
%o in the original coerdinate system.

Obviously the second-named method may on oceasions be improved
upon by smoothing also the item differences. This procedure, which i
also applicable directly, is likely to be justified where the precision of
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TABLE IV

ILLUSTRATING THE SMOOTHING OF TABULATED DaTa BY THE SMOOTHED ITEM-
DwrrerencEs METHOD

The dats of the first two columns, obtained by Jaeger,! represent constant-volume
atomic heats of platinum for various temperatures. All valucs for ¢, and Ag,
are in cal/(gm-atom C°). Columns headed Ac¢, and Ae”, represent the Nirst
and the sccond sets of approximations of smoothed values for Ae, as obtained
from the graph of Fig. 1. Columns headed ¢/, and ¢, similarly represent approxi-
mations to smoothed values for ¢, How well ¢, is smoothed is shown ¥ the
eolurnn headed a%*,; how well it represents the given values of &, is,shdwn by
the column Leaded ¢', — &,. (Bee Table V for a first approximation iy bhésmoul-h—

ing of the same data by another methed.) ~\’\
( :'('I
T in °C &y Acy | Achy A%y ey | e = | Ay | {i’lc",, ey ety — o
ALY
00 | 6.130 £.130 0,000 6,120 | —0.001
0.120 | 0.120 wN120
200 250} —o.012 | 250 odg’ P —0.012 | 240 | —.001
105 | 108 N | 108
300 333 — 012 | 338 [WN\.p03 — 02| 357 | + o2
099 | 096 096
400 454 - 01 000 — 011 | 433 | — .00t
o9l | 085 R 085
500 546 www.d braudi Bidayibitel in 006 - D11 | 538 | — 007
065 | 075 T\Y U7
600 S0 — 009 | Bl ) + 004 — 009 | 812 | 4+ 002
068 | ues |J 085
700 678 AN~ 008 | Ba0 [ 4+ po2 — o7 | 877 | — 001
053 | 868 5%
800 731 \} ~ 005 | a8 | + .007 ~- 005 | 35 ! + 004
034 u53 053 .
800 ass | AU — 003 | 7BL§ + .006 - 004 | 788 | + 003
JLois | 050 050
1000 8314 — 003§ B4 | + 010 — 00z | 838 [ - 007
¢ 053 | .047 47
1100 | (B — 003 | 888 | 4+ .004 — 003 | 885 | + .00L
™ 046 | 044 D44
1200 M 030 _ - 002 | 982 | + onz — 002 | 928 [ — 01
L0 039 | 042 042
2300 080 - 03| o4 | + o005 — 003 | 971 | 4 002
~\ 041 | 039 039
} 1400 . - : -
\ 7.010 003 | 7.018 | + 003 ~ 003 | 7010 000
036 | 036 030
1500 04 - o
6 . _ 003 { 049 | + 003 — 002 | 046 .000
033 | o33 034
1600 79 - :
002 | 082 | + .003 - 603 | 080 | + 00
" 020 031 N 031
00 108 .
. 113 | 4+ 005 141 | 4 008
1755 124

 Jaeger, F. M., Opiical Actir

, ty and High Temper .
Hill Book Company, 1930, pérature Meastrements, p.

371, New York, McCiraw-
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determination of the listed values for the dependent variable is rather
high. The procedure is best described by showing how it operates when
applied to & special tabulation of unsmoothed data. For this purpose,
we use Jaeger's ! values for the constant-volume atomic heats of plati-
num for the temperature range 100° C to 1755° C (Table IV).

The first step in the application of the item-differences method involves
the determining of the differences Ac,. These are plotted as in Fig. 1

120 .\
\ \
\ K@\
=} 2\ ~
100 —IN
s} _ b
o NN
E.os0 .
o S
: »
g y
~
B
2060
&
<]
.Dl'g.nl
040
\.\_
[=]
020 -
0 o\ 400 800 1200 1600 2000

p .\’ N Temperature in°C
Fie 1. Tncremedthof eonstant-volume atomic heats, Acy, of platinum (sec Table TV)
for 106 C° ?t}eﬁla]s as a funetion of temperature, fur use in smoothing tabulated
data by thesuccessive approximation, tabular method.
AN
an 'ﬁ‘ém'ooth curve is drawn to represent their means. Values of Ac’,,
colunf 4 of the table, are taken from this curve and applied to some
arbitrarily chosen recorded ¢, to give the first approximation ¢/, fo a
smoothed sct for ¢, As shown by the columns headed A%c’, and
¢’y — ¢4, the first attempt at smoothing has yielded results which,
though well smoothed, are generally too high in the region 600° C <
7 <« 1700° C. Revision of the values recorded for Ae’,, still maintain-
ing the principle that the values for Ac, nced to be smoothed and

1 Jaeger, T'. M., Optical Activity and High Temperature Measurements, p. 371,
New York, MeGraw-Hill B »ok Company, 1930.
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TABLE V

TLIUSTRATING THE SMOOTHING OF TABULATED IdaTa BY THE Luast-Squarms
MerrOD As Exrressep RY Eq. la

The data of the first two columns obtained by Jaeger ! represent constant-volume
atomic heats for platinum. The units for ¢, Ae,, Ale, ¥, and &' are uniformly
the eal/ (gm-atom 7). {See Table IV where the same data have been smoothed

by means of another method. } A\
T
™ in oC Ca Arg Al | 120+ =3 — ' _ad| 85’ Ep—op 'y 'A}::';,;\ a3
- —p
100 {6130 (B
0.120 N 0.1
200 | 250 —0.015 WM as0 — it
105 ) 108
aa0 355 — 006 | 12{—=0.008) ~3{=0.035) [4+0.03NR0001 | 356 — g
099 \8: 0uY
400 | 454 — 08 | 12(-0.008) —3(—0.048) |+704% [+ 001 | 455 - 13
091 AW 086
500 | 545 — 026 | 12(-0.026) —3(—C.05DK |+ 141 |~ 004 | 54 RE
065 $ .073
600 | B0 1+ 003 | 12(+0.00%)-3(-0035] |+ 141 [+ 004 | 614 — 012
065 &Y 0861
700 | 6 — 0151 1 L015) B - - 008 —
678 g W brazﬁTﬁa(ilg'};y?&*E;%'p 102 003 | 875 oss 13
HOD | .71 + 000 | 120+0.008 2 3(—0.023) [+ 081 [+ 002 | 733 — 008
054 050
ou | 7B — 008 | 12(=0.008) —3(~0.008) |-~ 072 |- 002 | .7s3 400
046 O 050
1000 | 831 + _n%\12(+n.m7)—3(-0m1} + 087 |+ o002 .833 D00
053 050
1100 12{—0.007)~8(—0.014) |— 042 |— 001 8%3 — 004
046
1200 12(-0.007)—3(—-0.019) [— 027 |- 0011 .920 — U003
041
1300 12(40.002) —3{—0.008) |+ .048 + 001 970 — o0z
039
1400 12(—0.005)=3({—C.011) 1— 027 |— 001 {7.000 - 002
o . 037
L5004 046 — 003§ 12(-0.003) — 3(—0.015) 008 000 | 046 — .00t
m~\.J k] 033
\WD 079 - aed 079 — 004
029 029
1700 | us 108
5
56 | 124 184

1 Jacger, F. M., Optioai

. Actpity and High Temperatire Meastirements, p. 371, New York, 3eCiraw
Hill Book Company, 1930
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keeping the differences ¢, — ¢, in mind, may be made to yield a second
approximation which is more satisfactory than the first. Such a second
approximation is shown in the column headed ¢”,. How well the
smoothing for the differences Ac, and also for ¢, has been done iz shown
in the column headed AZ%”,. That the smoothed values for ¢, retain
closely the general trend of the original data, an important requirement
for any satisfactory smoothing method, is shown by the column headed
e, — €,

In practice, it is sometimes desirable to extend the process just de-
seribed to the smoothing of second-order differences. Where the typé >
of cquation necessary to represent the data is not known and whergathe
graph showing y = f(z) is not sufficiently precise, this method.ould
seem to be among the best if not the best. >

For the sake of a comparison, the smoothing of the data,“giﬁ' onstant-
volume atomic heats of platinum listed in the first tive ‘columns of
Table IV is carried through in Table V according b’ the arbitrary-
procedure method employing Eq. 1a. That the s gothed values thus
obtained will maintain the general trend of the Jipinal data is evident;
but, as shown by the columns headed A%spand A%y, the smoothing
produced by the first application is far fropi being ag satisfactory as
that produced by the item-differences méthod (see columns of Table IV
headed A%, and A%",). Sucesssiibipullisatignog the method employ-
ing Fq. la will certainly yield suceestive improvements; but the rate of
approach to & satisfactory limi€ Will generally be slow. This, added to
the fact that it is helpless ift émoothing the two values at either end,
makes the method seem Father unsatisfactory for practical purposes.

(c) Significant Figurésy A significant figurc is any digit of a number
which is used to help'dénote the size of the number rather than to locate
the decimal poin\tj.\' T'o illustrate, consider the following length measure-

ments: O
.,s\\ (1) 123 cm
RN (2) 0.00123 km
& \d (3) 12.03 em
N (4) 12.30 cm
(5) 12,300 em

Measurement (1) eontains three significant figures. It indicates at
most that the quantity is nearer 123 than 122 or 124 cm; le., that it
lies between 122.5 cm and 123.5 em. Measurement (2) also contains
three significant figures. The two zeros to the right of the decimal
point serve only to locate the decimal point. Valiues (1) and (2) are
identical,
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Measurement (3) contains four significant figures. Measurement (4)
also contains four significant figures. Unfortunately, the cxact signifi-
cance of the final zero when written as above is somewhat uncertain.
At the most, it indicates that the quantity lies between 12.295 em and
12.305 e¢m. At the least, it indicates that the quantity lies between
12.975 cm and 12.325 em.  In case the latter interpretation is correct,
the next lower and the next higher values that might be recorded on
the same basis are 12.25 and 12.35 em, the least count being 0.05 em.
There is no generally accepted poliey which enables the reader to tell,
from the expression itself, preeisely what was meant by the writexy Tn
any ease, recording a measurement as 12.3 cm when it may leyjustly
written 12.30 em suggests a precision less than that actually attained
and indicates carclessness or ignorance on the part\ of the re-
corder. A '

Measurement (5) as recorded is ambiguous, since. .if;.does not indicate
whether the length was measured to the nearest hieber, the nearest deci-
meter, or the nearest centimeter. For such quantities, when an indi-
cation of precision is desired, use may be m’écle of powers of ten, or of
subdigits. Thus, if measurcment (5) had\been written as 1.230 X 10*
cm or as 123y, em, the uncertainty, ggcépt as noted in connection with
messurement {4}, would be removeds When written in the latter form,
the small zero (o)ﬁr‘%’h‘{e}éﬁa{‘g}%ﬁéﬁ%’ff ]iéll;lrtllderstood to be the first uncer-

tain digit, 'Accordingly, the twe exprossions of length have about the
saine meaning. \

For a table to be of gréatest service, each value should contain neither
more nor lass than the;\n\llmber of significant figures it deserves. Tor the
case of x-values, .th.e,re is no point in writing 300.00, 400.00, . . . rather
than 300, 400,/\%7, since the independent z-valucs are understood to
?)c exact. .-E:qi\_ﬁ}:}e y-values, however, the number of significant figures
in each 1timqs an indication of the reliability of the table. If the table
is baa:egl on a theoretieal equation, as are mathematical function tables,
thg\.,'l)o’s,si}._vle number of significant figures is unlimited except for con-

(Venence in construction and use. If based on an equation with experi-
méntally determined constants, such as a table showing the radiancy,
@, of a black body as a function of temperature, T, where & = o7,
the number of significant figures depends on the precision of the expert-
mental constants, in this case . This prineiple also holds for an un-
know:n law, as in a table showing the brightness of a black body as a
function of temperature.,
dj'I.‘here 15 no generally accepted rule for deciding the exact number of

mits to record when tabulating 2 set of values of known precision.
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The American Society for Testing Materials gives rules ! which gen-
erally result in & number containing two doubtful digits. They state,
however, that for some purposes it is safisfactory to drop all digits
uncertain by more than about 15 units. A value recorded as 34.7, then,
may lie at best between 34.55 and 34.83, or at worst between 33.2 and
36.2. 1f the first st of limits is known to have too great a separation,
another significant figure is permissible; or if the sceond set is still too
small, the number should be rounded to 35. This is the practice which
the authors are inclined to favor, Still another practice consists of,
retaining the last figure uncertain by less than 10 units. Then 34%
would mean a value between 34.6 and 34,8 at best or between 33 7(and
35.7 at worst. Sometimes the uncertain digits arc printed inferity, e.g.,
34... A discussion of what is meant by the precision of a,u’a‘liie may
be found in Chapter VIL X \ 2

(d) Rounding Off Numbers. I a number is to be rounded to a specific
number of significant figures the following rules 2 should be observed:

AY;

1. If the first digit to be dropped is lessﬂi'-\fm}l five, the last digit
retained is left unchanged. N

9. If the first digit to be dropped is preater than five, or is five
followed by digits greater than zero, tha Iast digit retained is increased
by one. wwv.j.{:lb}‘aulibrary_org_in

3. If the digit to be dropped is fivé followed by zeros only, the number
is rounded to its nearest evert value.

Thus, rounding to cne deéiinél.place,

) 12345 yields 12.3

12,367 yields 12.4

s 12.356 violds 12.4

A 12.350 yiclds 12.4

N 12.450 yields 12.4

4 o\' 3

( A Bbreviated Forms of Tabulation. Within the limits of space which,
may be accorded them, tables should he so constructed that a desired
guantity may be obtained with the greatest ease. Doing so necessitates
not only the observance of the general policies set forth above but also
certain procedures for certain special cases about to be presented. For

11033 AST.M. Manual on Presentation of Daig, p. 44, Second Printing, March

1937, A.8.T.M., Philadelphis.
2 These rules are slightly different from those recommended by the AST.M.

Manuel on Presenlation of Date, p. 44
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the most part, these procedures concern abbreviated forms of expres-
sion, and, in addition to making it easier for the user of a table to find
desired material, save in space and in printer’s ink. Five such speeial
cases will be congidered.

1. Given that all values for a variable are fractional and that, when
written decimally, they have digits other than zero in the first or
second place to the right of the decimal point, the customary policy
ix to list a zero in the units place for the first value of a column of
values but not in the succeeding values of that column. SeeTables
I and II of Appendix 2. Often even the zero for the initialvalue is
not listed. S

2. Given, as a variation of the first case, that the first”significant
digit, particularly if oceupying the first place to the 1¢8t of the decimal
point, varies only occasionally, a common pra,gtjcé eonsists in re-
cording thut significant digit for the value at the’top of the column,
leaving the corresponding position vacant for all following values until
a change in that digit oceurs, recording tfl\ie\new digit and procceding
as hefore, Table TV of this chapter: Sonitains two such illustrations.

3. For cascs where the values for awvariable arc expressed in terms
of 107" or 1054 -ofdwhatiis-coppdged a satisfactory unit, two pro-

" vedures are rather common, ?g According to one procedure a column
heading is often written in“an appropriate corresponding form. Sce
Table IT of Chapter VI\I (b) According to the other procedure, the
first value in a columfiis sometimes written as, say, 0.05010 provided
that all values for the coluran agree in having zero in each of the first
five places to thewight of the deeimal point. Other values, properly
aligned, thep Jnclude only three digits each to correspond to the 010
of the firstyyalue,

4. .C@{éh that all values to be listed in a column are given with
sevgrﬁi significant figures of which only a few vary throughout the
'.L?]llm“; two procedures are commmon. (a) According to one procedure,

o~\What which is listed is the differcnce between actual values for the

" variable and some rounded convenient value. See Table 111 of Chap-
ter VIL, where only those portions of velocities in excoss of 209,000

ue orded e first of the column only. Succoeding
values will include digits only in places where variations oceur in the
(‘-Oluml.l. Thus, as such succeeding values for the first column of the
table just referred to, we might have 299,728, 733, 738, . . ., 818,

and 823. 'Of course, the final digits for all values must fall in the
same vertical line.
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5. The last case to be named concerns quantities that usually have
the same number of significant digits but which vary considerably in
order of magnitude. A common custom here makes use of powers of
ten. The details of application will naturally vary with the author.
In Tables VII and V1II of Appendix 2, the power of 10 is indicated
by the numbert enclosed in parentheses. Thus from Table VIII, we
see that kp for n = 6 is 14,285,714 X 107 and that k; for n = 40
is 46,004,315 X 10712,

() Tabular Differences., The successive tabular differences of the
y-variable are of importance in eertain interpolation methods and in,
testing the type of rclationship between y and 2. The first differdnbe,
denoted by the symbol A, is defined by the equation S\

\

X
P !

AYp = Yol — Yn ~\ : [2]
s
Higher order differences, A%, A%, etc., are similarly dcﬁ:}z}d:
AQyn = AYny1 — AYn = Yni2 — 2yn+1 'J?ibz: [3]
3 a2 2 ."\ N
A%y = A%ny1 — A%e = Ynis — 'o:yq.;é + 3ynp1 — ¥n (4]
www.dp}’ta’tzﬂ'ibrary_org_in

3

Such suceessive differences are often’ arranged as in Table VI,

&
¢ \.J TV
¢ \TABLE VI

[riusTRATING TR\ UsuAL ¥oRM oF THE DIFFERENCE TABLE

PN J
z :t\’ oy Ay aly ady Aty
a :"\ W
&
2 8
*Zn Yo
:..\': 3 A
<\; Yz tar | om A%
Ay Ay
x + 24z ¥ Ay My
' Aye Aty
Zg + 3Ax v Alyy
Ays
T + 4Ax Y4
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A numerical example is given in Table VII.

TABLE YII

IirosTRATING TRE METHOD OF CONSTRUCTING A DIFFERENCE TARLE

[Note that since #- and y-valuos arc related by the equation ¥ = 1 + 3z 4 3z% all differences of the
third and higher orders vanish.]

x ¥ Ay azy a“y Aty
Q"
-2 7 .
-6 (\)
-1 1 6 N\ ¢
0 1] N
0 1 6 -
6 0 D
1 7 6 O
12 ¢
2 19 ’:i\\'
.‘\\“

6. Interpolation. There are numergus ‘interpolation procedures for
finding intermediate y-values corresponding to a given z-value in the
range of a particular tHBR:IREXMEDIdPriate procedure depends on the
aceuracy of the table, the typeef relationship presented, and the pre-
cision desired. One or angther of the simpler methods given below wiil
ordinarily serve for mogt}purposes. Other methods may be found in
more advanced textsg{ ™

{a} The Graph Method. TFinding by interpolation a ¥ corresponding
to a given 2, x, gay; necessitates four steps: (1) selecting from the table
certain converiont corresponding values of z and y in the region of T,
(2) plottirzxg;’ﬁesc values on ordinary eross-section paper, (3) drawing
the besQ&uwc to express ¥ = f(xz), and (4) reading the desired g, from
the curve. Depending on the number of points plotted, the openness
Qf the scales selected, and the care used in plotting and drawing the
\cufvg, this method may be used to give poor, moderate, or highly accu-

Fate interpolations. Unless the table is very detailed, a worker requir-

ing frequent interpolations from g, given table will ordinarily make such
a gl‘a,pi:l and use it thereafter to the practical exclusion of the table.
The principles of plotting data are treated in the following chapter.

od. When interpolations are to be

(&) The Proportional Part M eth
made from a given table only occasionally, or when graphing is not

! Whittaker, E. T., and Robinson, G., The Calewl 1
London, Blackie & Son, Ltd., 1924, sosiun of Grosoations, Chap- 1
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practicable, numerical methods can be used. Of these, the proportional
part method is the simplest. It assumes that between tabulated values
of z, y varies linearly with . Using this methed, the y-value corre-
sponding to a given x lying botween two successive tabulated points,
(z1,71) and (xq, 2} Is obtained from

y=p+ 2L ) [5]
Tz — I
(¢) The Gregory-Newton Method. This method is longer but more
accurate than the proportional part method. It is based on the assurhed
relation O\
y=A+ Bz + Ce® + D2® +--- Oy 6]

N

containing unknown constants 4, B, C, ete. It is deri\gfid'}as follows.
Roferring to Table VI, it is scen that \\

1 = Yo + Ayo
\Y;
Y2 = ¥+ Ay = yo + 240 + &)p
¥s = y2 + Az = yo + 3dypbAdye + Ay,

S
www, dbvaulibrary.org.in
N
°

In general, if is evident that for i}itegral values of »,

= Yo + nAyO + -*'—'-_Kv"li) n(ﬁ_%_'g) Yo +-- [7]

where n = (z — xg)f A:c, and in which the coeflicients of the A’s are
those of the binemial theorem. Provided Eq. 6 is fulfilled, it may be
shown that J§Y7 holds for all positive values of %, fractional as well
as integral{"\ t gives directly the y corresponding to any given z in
terms ()f asneighboring tabulated basie value, 3 (usually the nearest
smallek, va.lu(‘), and the successive differences, Ay, Ay, ete. The re-
strﬁtlon of Eq. 7 to positive values of n does not prevent its use for values
of x less than zq. It is then necessary to consider the table in order of
decreasing values of z, whereupon Az 18 negative. However, # remains
positive.

In general, Eq. 7 is an infinite series. Usually, however, and espe-
cially when Az is small, the terms of the higher orders are negligible in
comparison with the first few terms, so that the formula is ordinarily
practicable. The exact number of ferms to be used depends on the par-
ticnlar ease at hand. Note that if the terms beyond that containing
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Ay are disregarded, we have the formula for the proportional part
method.

Iustrating the use of Eq. 7, let us determine the value of the proba-
bility integral,

Py = \% fo jme-’**w’ d(hz) [7a]

corresponding to hr = 0.97, by interpolation, using data given in the
first two columns of Table VIIL. Using 1.00 as the basic ha:-vs,lut{, the

TABLE VIII O\

NS ¢
Dara axp CoMPUTATIONS FOR DETERMINING & PROBARILITY mylnhe OnEaorty-
NzwroN INTERPOLATION METHOD (x.‘;'

\*
haz Pis APy, A4, APy
D>
1.00 0.84270 A
—0.04578.5}
0.90 0.79691 % —0.00802
| —0.088Ri —0.00047
0.80 Wmm'aulubraty_grg_m —0.00049
450" 06431 —0.00015
0.70 0.67780 | ™ —0.00964
LN —0.07394
0.60 0.60386™
™

To of. the pregg@ing discussion, and —0.10 as Ahz, n becomes 0.3 and we
obtain for &‘g}" or, from the standpoint of Eq. 7, for 4y 5,
“\:~

Pu_?7:f=\0.84270 + 0.3(—0.04579) +- 9—610—3———1—) (—0.00902) +- - -

\‘;

= 0.84270 — 0.01374 + 0.00095 — 0.00003 -+ . . (8]
= 0.82088

The value ob{;ai_ned, 0.82988, is greater by 0.00001 than that generally
reported. It is much more precise than the

» hamely, 0.82896, which is o
terms of the right-hand member of Eqg, 8. s glven by the fist two

(d) The Equation Method. This method ists i i
pirical equation, § = (2). conslsts in finding an em-

to fit certain selected tabulated valies of 2



INTERPOLATION 19

and y, substituting thercin the given value for , and solving for the
desired 4. The particular type of equation to select will depend on the
nature of the table. Ordinarily, the power seties,

y=A+ Bx + Ca? +--- (9]

suffices. For sufficiently small ranges, only threc ferms are necessary.
Constants -4, B, and ¢ may be determined to yield an equation that
will pass through any three selected points, (x1,01), (#2,%2), and (zs,¥3).
Asg such points, the three nearest the given x are usually chosen. In(\

determinant form, the desired equation is A
¢\
'S\
y 1 xz 22| D
? N
n 1 x 7% | O
=0 %) [10]
y2 1 a &t )
A
o)
ys 1 23 5332 :\s

Eq. 10 may be reduced to the form of Eg, O values for A, B, and €
are desired. If not so desired, wemaibsuldtitate. eug appropriate value
for z directly in Eq. 10 and solve theé“determinant for the desired y.
Where the intervals z; — 2; and¥; — z2 have the same value Az,
much time may be saved by changing the origin of coordinates as from
(0,0 to (x2,%2}. Represer{@g}thc new coordinates by &’ and y” where

L >

y Ml xr — Yo

’. 3 s
KO [11]
and £\
\\\ ¥y =y— g [12]
we have ..\‘:'{"
& & — —Az
V Gi= Py~ [13]
'y = -‘F—% =0 [14]
z'y = “’S—A_xf? =1 [15]

¥ =1 — ¥, el [16]
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In the new eoordinate system Eq. 10 becomes

y; 1 x! x!Z

?J!]_ 1 —1 1

o 1 o0 o |~0° (7]
y’3 1 1 1

whieh reduees at once to

~
i -1 1 |=0 A 18]
{

ya 1 1 O

Eq. 18 may be quickly solved for 3, and y may then "be ohtained by
adding y». ¢*O

To illustrate the use of Eq. 18, consider the prﬁk\)lem of the previous
section. Representing hz by x and P by y, th{ tiecessary tabulated data
in terms of the original and the shifted cogfgiﬁate systems become

T Y N tx" y’

(ha) @ |-

0.80ww.dbravditpgyporgn —0.05481

0.90 0.79691% 0 0

1.00 0,84270 1 0.04579
For 2 = 0.97, 2’ = 0.7~ Substitution in Eq. 18 yields

POy 0.7 0.49
27 -0.05481 -1 1 |=g [19]
2 0.04579 1 1

from whick ' = 0.03300, and y = 0.82091.
thafu tsually reported by 0.00004.
.. (Although it has heen assumed in the foregoing that there is a common

#interval, such is not necessary. The procedure for this infrequent
case is left to the reader.

Eqgs. 18 and 19 give the same
formula, with the terms beyond
omitted.

(e} The Lagrange Method. This method is of particular importanece
because it can be used to fing the g-value corresponding to a given
z-value when, instead of a formal table, we have sinply o group of corre-
sponding z- and y-values not, separated by the common difference, Az.

This value is greater than

interpolation as the Gregory-Newton
that containing the second difference
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The Lagrange interpolation formula assumes that ¥ may be exprossed
as & finite power series in x, as in Eq. 9, namely
’ y=A+ Bxr+Ce* 4+ 19]
If the determinant of Eq. 10 or a similar one, confuining more terms if
desired, is expanded Lo express y in terms of y1, y2, ¥z -+ and the de-
terminant minors ¥, ¥y, Yy, Y3 + - -, one obtains dirvectly
LN S 120]
=W - " Yo T Mg """ =V 2
¥ ¥ 25 ¥z ¥y ¢

Expansion of the minore leads to the gtundard Lagrangian formlof
equution, namely O

:yl[_(_:r—xg) % @ —2s) (x—mgxl(x—a_fs)

(g — x9)  (m1— x3) " (&1 —wd (&1 — TN

) [20a]
(w—z) (=) (x_*ﬂ’-i)x(ﬂfw)_x...}_k...

+“[mum)<w—m>igfm,@§wg

There are as many terms as there are poil;t.é:,uéed in the interpolation.

To illustrate, suppose it is desired to fifich the current which will heal
te 2500° K, in vacuo, a long tungstenfiflhnulihraoycoradins is 0.002 m.
From a list of tabulated values, weind, for instance, that the currents
for wires with radii of 0.030 ran{\).05¢ mm, 0.080 mm, and 0.100 mm
are (1.690 amp, 1.485 amp, ‘30(‘)?} amp, and 4.200 amp, respectively. It
follows, from the Lagrange\ﬂn:ffmla, in case, for convenience, we usc the
micron values for the filgment radii, that

3

A</
62 — 50 62 — 80 62 — 100
162 =Q@amp[] N ]

30 — 50 30 — 80 30 — 100
O\ _
B 4 1485 ["_2— 30 62— 80 62 - 100]
o A85 8D | 2577 T5G 50 — 80 50 — 100,

@ \Y
%
\:

62 — 30 62 — 50 62——100—l

62— 30 62— 50 62— 80
i 2 ~—-—J [21]

+ 4.200 amp [1_00_~§) 100 — 50 100 — &0
= {—(.0809 + 1.0835 4- 1.4502 — (.4147) amp

= 2.047 amp
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This is very close to the 2,048 amp predicted by the 34 power law for
the condition of congtant temperature, namely,

0]
I to) r -

It is intcresting to nofe that, with the separatc omissions of terms in-
volving the 0,030 mm and 0.100 mm wires, the values obtained for

N 3
20 l \ O\
. - ‘\ ’
16— ' \ . N

. HNAN'S

i]

12 15 20
T

Fia. 2. Graph showifgpossible dangers in assuming without testing that a simple
POWer series expressing y in terms of x holds when the valucs for Az vary consider-
ably. Thei Jgg\lénts of curves A and B between points of crossing are much more
nearly eqiul\hian those for curves 4 snd €. Between the limiting peints of cross-
ing, the"f'o}mcr puir gives more nearly the same loci of points than the latter pair.

I mggw\are respectively 2.045 amp and 2,051 amp; and that, when the

tétpis involving these two wires sre omitied simultaneously, the pro-

portional part value of 2.091 amp is obtained, as is to be expected.

Any number of corresponding I and » values may be substituted in

Eq. 20.  As might be expected, the terms involving the wires nearcst

the given wire in size arc the most important in determining the desired

current,
Although intended prineipally for use where the z-intervals are non-
uniform, the Lagrange method applies equally

well to interpolations
from a formal table with a constant Azx.
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In the application of methods based on the empirical power series
fors of 1igs. 6 and 9, one needs to consider certain possibilities for
trouble, particularly where the Az-intervals differ considerably. To il-
lustrate, the points (0,0, (4,2}, and (16,20) not only satis(y the equation

2

T ®
v=37T6 (23]
but also the equation
_%y ¢ .
TS5 T 15 [24],

How great is the danger In interpolating in these two cases is showh g
Fig. 2, where both cquations are graphed. If, however, the v;a.hiés for
Az nod for Ay are scparately of the same order, there is nofrthe same
great: danger in the celoetion of the wrong power series. . Thus for the
points (0,0}, (8,6), and (12,12), we have the two equa.t”f(:}ns

Ed o
6 &

+ (23]

W | B

‘y =
and
2 "
5 _ & [25)

T = -,
Jwivd8braulibrary org.in

As shown also in Tig, 2, the plgb of ‘Eq. 25 will generally yield interpo-
lated values for y which are pat.s0 greatly different from those obtained
using Eq. 23. x\ \

() The Taylor's Serigs, M ethod. The uscfulness of this method is lim-
ited to tables based(on a known +ranscendental equation. For such
tables the method gives good results. In accord with Taylor’s series,
the interpolai{)"fl‘fonnula is

O\
y @) = @+ 50

) & 5x)2 (3z)®
O o + 50 &+ 1700 G 4570 gy o 120
where 8z = z — 2o and the primes indicate differentiation with respect
to x.

T4 suffices (1) to select from the table an xp as near as possible to the
given z, (2) to form f'(zo), [/ (%a), &l and (3) to inscrt those values,
together with the appropriate 82 into the formula to cbtain the desired y.

Suppose it is desired to find the value of 52 Tn a table, we find
for ¢~ and ¢=5° the valucs 335 X 1077 and 128 X 10~° Applying
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the Taylor’s series method, we have in turn

fley = e~
f@) =~
f(x) = e %, ete.
dr =82 —-80=02
whence
y =82 = ¢80 _ 780 (9 9) | e—s,uo_-g_é . ~

= ¢750 (1 — 0.2+ 0.02 — 0.0013 + 0.00007¢)
=335 X 1078 (0.8188) = 274 X 107% > [27]

The value obtained is as precise as the value given for fet_s'ﬁ.

7. Extrapolation. When the value of y is desired"fbr\an x outside the
range of values covered by the data, we must feett to extrapolation.
Tn methed, extrapolation and interpolation aredalike; any of the inter-
polation procedures deseribed above may bediged for extrapolating. The
chicf differences lie in the accuracy of ownresults.

Where the law stating the dependency of ¢ upon « is known, no
difficulty is experienceddinbeifhasiBtespglation or extrapolation. All
methods, exeept the simple préﬁort-ional part method, may be used
with equal safety even if not with equal case if the range of extrapola-
tion is not too great. ﬁsﬁvever, the cquation and the Taylor series
methods are then pa t'\é‘ulﬁr]y applicable. Generally such determina-
tions are not regarded es extrapolations.  Where nothing of the law of
variation is knowny beyond the range for which tabular values are given,
extrapolationg feprosent little more than suesses which have a ccrtain
amount of ,rgaétiha,blencm. Where something of the law of variation ig
known, %@r&polat-ions take on inereascd probabilities as to correctness.
As a regult certain extrapolations can be made with a degree of certainty
whiehris rather high. To illustrate, the brightness of carbon at tempera-
gges above its normal sublimation point, such as are realizable under

essure, has not been determined experimentally nor is its law of varia-
tion known. Knowing, however, that the radiations from earbon are
subject fo ccrtain laws of thermodynamies permits one to set cortain
upper and lower limits within which extrapolated ‘brightnesses for the
carbon must fall.

8. Summary. The table, onc of three forms for presenting data, lists
corresponding values or properties of the dependent and independent

variables in an orderly arrangement. Tables are simple and inexpensive
to construet, easy to use, and compact,
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There are three classes of lables: the qualitative, the statistical, and
the quantitative or functional. The prineipal parts of the statistical
table are the title, the stub, column headings, and items.

The functional table is similar to the statistieal in form, but Jists
corresponding values of dependent, y, and independent, x, variables.
Values of @ differ commonly, but not always, by a constant amount,
Preferably y-values should be smoothed. Depending on eircnnstances,
this niay be done (1) by taking corresponding values from an equation
that represents the data, (2) by taking corregponding values from a
graph in which a smooth curve has been drawn to represent the dataq s
(3) Ly applying corrections obtained by an arbitrary mathematicalaro*

7

cedure such as is connected with Eq. la, or (4) by smoothing th ‘Ttem
differenees, applying such diffcrences o obtain an approximatesmoothed
tabulation and finally adjusting to obtain a tabulation whiﬁﬁ’ﬁmintains
also the general trend of the unsmoothed t-abulat-ionm(ﬁsible 1V and
Tig. 1). Except where the law of variation in equatidnform is known,
the last-named procedure is obviously best. RS

The precision of tabulated data should be inidieated by the number
of significant figures in the items. General]gi{%‘-e last digit of an itemn
should be the first deemed uncertain digifsiinless the uncertainty 18 of
the order of 114 or less, in which c.%s\%;‘é;'.' con uncertain digit cither
a zero or five, whicliever seems {:Iqsgfffzo't & true vaue&is permissible.
Some prefer not to round off tlanSef last digits.

In rounding off numbers, the Tast digit retained is left unchanged or
inereascd by one as the amount dropped is less than or in excess of (.5
of a unit in the last plae etained. If the amount dropped is just 0.5
of a unit, the last digib retained is made an even digit by leaving it
unchanged or by ihdrtasing it by onc if necessary.

In using a tQEﬁ(, interpolation is oftcb resorted to for finding the ¥
correspondilight a given a for intermediate values of z. Interpolation
may he done graphically by fitting a smooth curve to the tabulated data
and r:;a{]iﬁg y from the curve. A second method is the propottional

Da\{? meéthod, where

y:yl-_l_?lz"—y1 (:t:—:rl) [5]

Xa — Iy

and (r1,7;) and (2,%2) are successive tabulated points such that
zy <z < zg. The Gregory-Newton interpolation formula is

nin —1) .
¥ = ¥y + Yo T —(—2!——329’0 +-- [7]

where (2, 10) is the tabulated point nearest (z,5) and n = (x — 20)/ A%
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The equation method consists in selecting three fabulated points (xy,,),
(€3,%2), and (za,43) nearest (z,y), shifting the origin and chunging co-
ordinates by means of the substitutions

P r — g

Al [11]
Ax

)

¥y =4 [12]

substituting values of %'y, %3, and &’ in the determinant equaliGmn

’ ’ 2 o\:\

y 2z N

yi -1 1 =0 A [18]
¥'s I 1 “‘\:

and solving for " and then y. The Lagrange forniula, Eq. 20, is uscful
for mterpolating from a list of values not arrehged in a formal table.
The Taylor’s seties method, Tq. 23, gives'good results for tables based
on a known transcendental equation. W

Tables may be extrapolated by applying interpolation procedure to
values of # outside the range of ;t}ipfabulated z-values. Except where
the law relating y andw dblenifimur i e itrapolations are only approxi-
mate at best. Extrapolationsfor values of # just beyond the limit of a
table are safer than those(fer values considerably beyond the limit.

,\\ .
2\ PROBLEMS
1. The followihgdabla is a portion of a lable representing the results of an extended,

important.stgwh’(..df ait by Roebuck! It shews the Joule-Thomson offect wof air
expressed ip“(}°~/at-m’as & function of temperature T and pressure P

.T\ in o
o N
b 0 50 100 150 200 250
(SN
1 0_.2746 0.1456 0.1355 0. 0961 0. 0645 0.04048
20 BT L1830 1258 OR83 L0580 L0356
60 L2200 L1871 L1062 0732 L0453 LD2hd
100 L1822 L1310 O8R4 L0600 L0343 1165
140 L1446 R 726 MR L0250 0092
180 L1097 R2G LORE0 0376 0174 + 0027
220 L0795 Rili] (0449 L0291 0116 — D02s

! Roetmek, J. R., Proe. Am. Acad, drts Sei., B0, 337 (10253, a3 corrected by the original author.
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This table may be improved by smouvthing both as to pressure and as to temperature.
Ymooth a8 Lo variations in pressure. When so smoothed, note whether there scems
1o e need for further smoothing as to temperature.

2. The fractional voltages and candle powers of vacuum tungsten lamps in terms
of their normal voltages and candle powers at 2450° K as a function of temperature
has heen reported 1 as follows:

T in °K % in % Iim %
2000 55.0 10.4
2100 63.6 18.6
2200 73.3 32.2
2300 83.5 52.2 O
2400 94.3 81.4 N\
2450 100.0 100.0 N+
2500 105.9 122070
2600 118.5 1798,
2700 132.3 Z57:0
N\

$
Torm & new iable with smoothed values, nminmimﬁéthe values ag 100.0% for
2450° K. Nole that end values are as linble to erbasgare other valueg,  For smooth-
ing the I/{, values, consider a curve showing AlogJ [ as 4 function of T,
2, Derive Lagrange’s interpolation equation®
4. Tor the molal heat of air at & press\:" ?;’a\“ﬂfi%‘;ﬁ?h}aﬁﬁwﬂf gidee the following

values us o function of temperature. W3

.

7 b O T e
—100°C o.zﬁ&m'}'(mole K% 4 75°C  0.2475 cal/(mole K°)
- 75 2630 100 .2470
— 50 (7556 150 .2466
— 25 o) 2514 200 2463
o 2902 250 .2468
,+§25’ 2487 280 L2471
LN 50 2480
AN

mJ
Detepmine the values of ¢, for air at 20A and +40° G, —20°C, and —80°C.
5. "The spectral transmittances of & 6 mm thick, 28%, Corning high-transmission

red glass as reported in a graph by Forsythe are:

X 0.63. 0.6 065 0.86 0.67 068 0.69

0.0 0.71 0.72 0.73 0.74
t 0.00 g.02  0.23 0.60 0.736 0.770 0970 0.7

45 0.760 0,730 0.T45 0.733

Determine the transmittances at 0,655 » and 0.665 u.

1 Forsythe, W. E., and Worthing, A, G, Astrophys. 4. 61, 352 (1925). Values for 24007 adjuated
2 Roebuek, 1, K., Pros. Am. dcod. Arts Sci., 64, ZHT (1930}



28 REPRESENTATION OF DATA BY TABLES

8. Tor the variation in relative speetral brighiness at (.534 p from r:cn.tcr to limt.
of the sun’s disk, Abbot ! of the Smithsonian Tnstitution gives the following data:

I 9.0 0.40 0.55 0.656 0.75 0.825 0.875 0.92 0.95
@

% 463 440 417 396 366 337 312 281 254
[LENY
Tetermine, by the proportional part, the graph, and the Lagrange rne.thocls, the
relative speetral brightnesses at r/a = 0.20 and r/2 = 0.80. When graphing, (:llmof-&c
the seales so that the hne drawn makes an angle of roughly 45° with the coordinato
axes. ~

7. Using the data of Problem 6, extrapolate to determine a relative dphetral
brighiness for 0,634 p at r/¢ = 0.98, wsing a combined graph and (:wgm_ywbu wion
method and the Lagrange method,

8. Smooth the following tabnlation of spark-potentials belween 75- l'm (dmmvu 28}
spheres in air with the positive sphere grounded as a funetion :Jf'bpﬁue separudion.

Sparking 'Spsn king
CGap Potential Gap “\1 Yotential
5 em 137 ky 35 em 720 kv
10 263 40 s 775
15 382 45\ 825
20 483 N 870
25 573 . \J 05 908
30 H50 "'.. 60 a37

Handbuch der Phyaik \?,d\élf:, v aril ]&hlrge]]iy 16, 407 (1927), via IToug’s Electron and
Nuelear Physics, 461 (1938).]

9. Koch has reported the [ :llcm mg v&lueb for v the ratio of the two specific heats
of air at 0° C and various pro\urea AT walues are based on Roenlgen's 1873 de-
termination of 1,4053 for 4% hrd 0°C. Smooth the tabulated valucs.

Pressures ¥ Pressure a
148> 1.4053 125 A 1.680
PN 1.473 150 1.739
78 1.530 175 1.783
\Gs - 1.593 200 1.828
‘\\w’mo 1.646

10.4 The following table of heats of vuporization of water for various temperalires
. t‘-LkE’Sl from a well-known source shows need of smocthing.  Form a smoothed table.

\ ™ T L T L T L
“C ealigm °C cal/gm e cul/gm
0 595.4 70 556.9 140 5l1.5
10 500.2 RO 5h1.1 150 A04 1
20 584 .0 an 544 .9 160 496.5
30 579.6 100 538.7 170 488.7
40 aT4.2 110 532.3 150 480 .6
A0 68 4 120 h25.6 190 472.3
60 5628 130 51%.6 200 463.8

L Abbot, €. G., The Sun as a Bour

ee af Conlinusues Fadiatior :
Energy, Bd. by W. K. Forsythe, 1, P 76 of Measwrement of Radian,

New York, MeGraw-Hill Book Cownpany, 1937,



CHATTER II
REPRESENTATION OF DATA BY GRAPHS

1. Introduction. The graphical method of presenting dafa is an
adaptation of the principles of Descartes’ analytic geometry, whereby
numerical values are represented in geometrical form by the length of '
a line, the arca of a surface, the volume of a solid, or the rotation/de-
scribed by an angle. The fact that all measurable quantities by e
given such representation does not mean that all data should be plotted.
For certain data a graph means little more than wasted timéand labor.
For other data, failure to graph results not only in a l,gé;sidf time and
encrgy, but also in a failure to perceive sigmificant relations. A decision
as o whether or not to plot must be trusted to one’s tommon sensc.

In this chapter we set forth the general adyqutﬁtagcs and purposes of
graphical representation. Fxaroples and illystrations are given, first of
the simple qualitative type, then of the Jnere important quantitative
type. Finally, specific suggestions "é,:r{&? ‘s kibrawtated. for the con-
straction of graphs of the latter typea”

9. Advantages of Graphs. In tavor of graphs generally, it may be
said that (@) they facilitate comparisons of values, (b} they appeal to
the attention of a reader, (g){they permit casy refercnce to data, and (d)
they provide a compact form for filing. In addition, most graphs will
reveal readily the presgnde of maxima, minima, critical inflection points,
unusually high or Infrates of change, and periodic or other significant
features in a se€/of data, whereas otherwise certain of these features
may be eithe {overlooked entircly or scen only after a rather earcful
survey of thie tabulated data. Further, with the aid of a graph, one can
often determinc whether or not a relationship exists between the two
varigPley being considered, and sometimes, if a relationship cxists, its
math¥matical form. Still further, if a satisfactory curve can be drawn,
one may differentiate or integrate one variable with regpect to the other
directly from the graph without knowledge of the mathematical form
of the relation represented. These advantages warrant a somewhat de-
tuiled study of graphs.

3. Purposes of Graphs—Qualitative and Quantitative. A graph may
gencrally be classed as belonging to one or the other of two groups,
depending on the main purpose it is to serve. ‘Those of the first group

29
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are designed primarily to present a qualitative picture of a process (e.g.,
the growth of population in the United States) or of a condition {c.g.,
the sizes of the available armics of the European nations in 19393,
Graphs of the second group are intended primarily as quantitative tools
in operating and controlling mechanisms and methods or as guides in
rescarch. Commonly both purposes are served by a single graph, though
usually one or the other predominates.

4. The Qualitative Graph. Of the qualitative graphs, we have those
in which there is represented: (z) one variable, y, as though a function,
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FIG.' 1. Examples of two types of E;uahtativc graphs showing their characteristic
dlffer;:nccs. {Dute from Iﬁf\h Cengus of the U.S., 1940, Series P-3, No. 21, Nov. 15,
1941. N

&
flz), of the other variable, but actually without any suspected causal
connection offiet’ than that of a simullaneity in time, coincidence in
loeation, efegand (b) y = f(x) with a known or suspected causal con-
nectiox\b:ét’\i-'ccn the variables. The graphs of Fig. 1 iliustratc some of’
the differences between the two groups. Graphs (4) and (B) are both
plgt,gﬁof the same data. In (A4) the relative populations at the ends of
mg?gcceedjng decades are emphasized. In (B) it is assumed that popula-
t?c}n and time arc somehow related and emphasis is placed on this rela-
tion. Both (4) and (B) belong o the qualitative class of graphs, for
though (B) ‘is of the type most commonly used as a tool, it is not in-
tgnded.nor is 1t, in many respects, able to scerve any of the uscs men-
tioned in the following section. Ttis seen (1) that (A4) is a more striking
presentation than {B), though the latter shows the rate of growth more
clearly; (2) that plotted values of population can be read more quickly
from (4); and (3) that (B) permits more accurate interpolations and
extrapolations, uses commonly associated with the quantitative graphb.
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Fie. 2. Tour types of qualifative line graphs.
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Fic. 3. Four types of qualitative bar charts.
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Sinee the qualitative graph is usually drawn for the layman, it should
he particutarly clear, simple, and attractive. There are various types
which salisfy thesc requirements. Which to choose for a particular ecase

Al Othets
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At W, 204 R
1.5% i
Sllicon
25.80%
N ¢
At. Wt. 208 ¢\
50.1% 'S\
At Wi. 206 Oxygen g W
28.3% 50.02% N
f4). The stable isotopes of lead. (Com- {(8). The cothpgsition of the carth’s
mittec on Aoms, International Union crusl tof the depth of 10 miles, in-

clud‘in’g' ythe lithosphere, the hydro-

sljﬁg}je: and the atmosphere. (Clarke,

X o W, Date of Geochemistry, Ath Ed.,

.‘{f‘g}@.dﬁraﬁliﬂrﬁ@{oﬁgﬁwy Bull. 695,
N7 Washington, I €., 1920.)

ad
SN g

of Chemistry, Rep. Seci. Instruments,
7, 334-335, 1936.)

n\ Product
4 Slag 6%

Charge
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Coke 134
Pig Iron 15%

p
Qre, ste, Q}iy
N
~O Gases  T9%
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(). Relative weights of materials charged into and produced by a typical blast

{urnace.

Fie 4. Three types of qualitative graphs for expressing pereentages.

on the data, but often the choice is a matter of

depends somewhat up
gualitative graphs are

personal preference. Some common types of
illustrated in Figs. 2 to 4.
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5. The Quantitative Graph. A graph of the second or quantitative class
ordinarily shows the relation between two related variables in the form
of & regular curve, which may or may not be cxpressed mathematically.

o

L
K
=
o]
o

4
The sopper content of

73.97 Cu dnd 32

shown. Note that only a small portion of the graph sheet may be utilized, a consequence of having

the seales foreed upon the user.

2

5 6 7804,

steol as a funelion of the ratio of the intensities of the speciral lines 3

! lji
Lo B~ - B o T BT -t

Fia. 5. A logleg graph showipg a working eurve for speetrographic analysis.

7891

The vast majority of graphs in this class arc drawn on ordinary rectan-
gular c?ordinate paper with uniform scale divisions (Fig. lBj. Other
papel-.rs in rff,ther common use are the logarithmic or log-log (Fig. 5), the
semi-log (F‘}g. 6}, the polar (Fig. 7), and the probability (Fig, 8). Their
characteristies as to arrangement of axes and spacing of scales are readily
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scen. When the relation conneets more than two variables, the nomo-
gram (Fig. 9) 1s frequently & satisfactory form of graphical prescntation.

1

= oth ;e mes

el. The scale forced in part

MNumber of Cycles
§h showing a fatigue curve for medium carbon sbe
on the user is aceeptable in this instance.

gﬂﬁ%ﬁ%ﬁfﬁ
youj ajeni 13d spunad 40 spuesno:}-_ u §5a1%

Fig. 6. A semi-logarithmic grap

Tn certain cases trilincar paper (Fig. 10) can beused. These latter forms
will not be discussed further.

A graph, like any other tool, loses much in €
easily followed prineiples of construction arce

Hectiveness when certain
disregarded.  Therc are
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Fia. 7. A polar graplt sh&lug the luminous intensity of an incandescent lamp a2 o
funetion of angle of view.
A/

seven ma-i’r‘l; gheps to the preparation of a satisfactory graph. They
relate LN\
R\ \ {a) choosing the graph paper,

AN (b) choosing the coordinate scales,

N (¢) labeling the coordinate scales,
(d) plotting the data,
{¢) fitting a curve to the plotted points,
{f) preparing a descriptive caption, and
{(g) acknowledging the source of the data.

{@) Choosing the Graph Paper. Important questions to consider here
are:

1. Is ordinary rectangular paper or log-log paper or something else
the most satisfuctory for the particular case under consideration?
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G. If the graphs are to be reproduced in print, arc the coordinate
lines black so that they may show up well or blue so that they may
not show at all?

7. Arc the sheets of such size ag not, on the one hand, to lead to
cramped scales, to the elimination of significant figures which the data
may justily, and to errors due to the finite widths of the plotted
points and the lincs that may be drawn; or, on the other hand, to
lead to such large scales as to indicate an accuracy greater than that
which the data justify? Often the need for a large sheet may be gatis-
fied by pasting together two or more small shects. Sometimes the\
margin of a single sheet may be used to extend the seales o sufficiehd
amount. .\:\

(1) Choosing the Coordinate Scales. A poor choice of scalgsli\or the
coordinates, more than any other single factor, will make dI¥ wtherwise
aceeptable graph unsatisfactory as a tool. Such being the'gise, the need
of suitability rules is evident. Although none can ke \given to fit all
cases, where the maximum revelation of content f\ddta plotted or the
maximum of ease and comfort in the use of the'plot as a tool are con-
verned, certain general rules may be stated, /Granted the best selection
of graph paper, experience has shown 1t gentrally desirable to choose
the coordinate secales in accord witl’i";{%%fﬂﬂlﬁh'gﬁ'mi%g-iﬂ

Rule 1. The scale for the *ind{;?;e:ﬁ}dent variable should be measured
along the so-called x-axis. N

This rule is a stat-emcnt~0§f: un established custom. Which of two
varishbles shall be viewcfl‘a¥independent is usually greatly influenced,
if not actually detcrmjné%, by cither the experimental procedure or the
nature of the resullifgydata. Where in a process of measurement .involv-
ing two or morp\i’a’riables, the values for one are fixed arbitrarily an_d
corresponding values of the others are then determined, the former 1s
genorally ;-&fded as the independent variable. At other times, which
variable $hall be so regarded is a matter of opinion.

"R'u'ie 2. The scales should be so chosen thal the coordinates of any
pxi-;t.t on the plot may be determined quickly and eastly.

No scale is acceptable if it is difficult to read, How much scales may
differ in this respect is shown by (4) and (B) of Fig. 11, where extremes
of readability are prescnted. Compare the two curves for case and accu-
racy with which refractive indexes corresponding to wavelengths of
0.475, 0.6854, ete., can be located and read. . .

For rectangular graph paper with the space between successive main
lines divided into ten cqual small spaces, the most convenient scales are
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those in which such distances between successive main lines vepresent
a difference in value of onc, two, four, or flive units, or ithese values
multiplied by 10" where n is an integer. Scales In which this distance
represcnts three, six, seven, nine, or cleven unitls, cte., should seldon
if ever be used. Other seales, corresponding to 1.25, 2.5, or cizht units
per main seale division may occasionally be found desirable,
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R\
Fia. 11. Refractive m%x of dense flint glass as a funetion of wavelenpth, on graphs

mth (4) eonvenient scales, {5} inconvenicnt scales.
A\ X

Rule 3y>The scales should be numbered so that the resulioné curve is

as ?ﬁp\sﬁ)e as the sheet permits, provided the unceriainties of measure-
meaiare nui nutde thereby fo correspond to more than one or fwo of the
Staollest divisions.

K

\“Coordinate seales need not, in fact

values, Thf: seale for each variable may well begin, in accord with this
rulf-,, at or just below the lowest rounded value in {’;he data and end at
or just above the highest. There i, however, no justification for extend-
Ing a seale to such an extent that the uncetrtaintics for the values pi olted
correspond to more than one or two of the finer seale divisions (Trig. 12).

Rule 4. Other things bein 3
. ’ g equal, the varighles sh snulated
to give @ resultant curve which ’ ® should be manipulat:

approache . o
straight line. pproaches as nearly as procticable lo @

generally do not, start from zero
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The straight line is the simplest curve to constriet and to use. Whore
precision is a matter of concern, it is usually advantageous to plot, when
possible, variables which cause the resultant curve to approximate a
straight line. This is especially truc when the graph is to be usced for
finding slopes or the constants of a rational cquation by the methods to
be deseribed later. For example, if we wish to find the constants of an
equation of state of the type

pv = RT(l + ap + bp* + cp?) [1]
a graph of p 15 a function of » (Fig. 134) is of Little value. If, l'mw\ew.\.r‘.
the product pv is plotted as a function of p (Fig. 13B), the Jesultant
curve will approximate a line whose deviation from the hodieontal wili

-~ - - . Ny
show the first order deviation of the gas from an ideal ga¥, and whose
PR . . ™ . . .
deviation from straightness will show the sccond ordér variation from

an ideal gas. R
Many other types of equation can he rectificds ' Thus, the equation
By = (B, ¢~ @MU/ ST [2]

gives the Wien approximation for the spéf:i;\r'a.] brightness, By, of a black
body at temperature 7' in terms of thervalue (B, for a black hod ¥ oat
a standard temperature, 7, 1f exfevimental values of In (B 3 are plot-

. ) . dBrayti HEA 8%?1% ’ TLibyjare |
ted againgt 1/7", th?-,ﬂgurvelxﬂ'l]: ﬁpﬁmimate a straight line, sinec by
taking natural logarithms of «the original equation one obtains

In (B)= In (oB,) = 2 (—1— - 1) [3]
¢ \ A ATy ¥

an cquation lincamin Tn (Bx) and 1/T. The departure of suc
perimental cwvg ftom a straight line (for any
sources) is a fnbasure of the deviation of the spectral ernissivity of the
source fromiconstancy. Similarly, data thought to satisfy the Stein-
metz lsa%for work done in a magnetization cycle

h an ex-
oue of many non-hlack

"\.f;'o W = gqRB* [4]
“should give 5 straight line if log W ig plotfed as a function of log B.

Many other equations may be handled similarly, (Sce Tig. 8)

. Sometimes when the data fit « certain type of equation, a straight
line grapl} can be obtained by Pplotting the measured variables on other
than regular rectangulat graph paper more simply than by manipulating
the variables in some such manner as above, Thus, where the difference

in tlemporature, %, betwoen a body and itg surroundings at any time, ¢,
Is given by Newton’s law of cooling )

§ = fget [5]
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& cooling curve approximating a straight line may be obtained by plot-
ting log # as a function of {. When scmi-log paper is used, plotting 8 as
a function of ¢ suflices. This eliminates looking up and tabulating loga-
rithms. This Jatter method, however, in view of suitability rules 3 above
and 5 below, is eften unsatisfactory, and especially so if the constants
fy and o are to be evaluated.

Rule 5. Seales should be chosen such thal the curve shall, to the extent
possible, have a geometrical slope approzimating unity.

The geometrieal slope of a curve at & point is the tangent of the angle
belween the x-axis and the tangent to the curve at that point, afdhis
different from the physieal slope of the curve dy/dr at the goint in
question, whose value containg the units of the quantities plotted. The
latter quantity docs not depend on the seales ehosen for,p.Icftting, while
the former depends completely on the scales chosen. s\

Though rather generally ignored, the rule is of greab ¥alue where pre~
cisgion is concerned. This s especially true whemawgraph consisting of
a straight line, obtained in accord with rule 4,45 %o be used as a tool.

With scales chogen as suggested above, iNwoften found that a eurve
results whose geometrical slope docs wotsydbyanhiltefpuorgimity at any
point. ‘LThis is quite desirable, for theﬁ deviations of the plotted points
from the line will show up most ma'rkedl} Conversely, the line to be
drawn may be drawn most preclseI} An illustration is furnished in
Fig. 14 by the work of ITechfiland others in their important study of
“Energy at the Thresho ’\6f~\?ision.” Using Fig. 148 leads to greater
certainty of correct assignments of quantum numbers than does using
Fig. 144, Doubtvrs ahay well trace the basc lines and the computed
eurves for n = 6 c_Luanta, on translucent paper and attempt to fit the
eurves to the oth\r sets of data.  On the other hand, if one wishes to
cover up de &t‘ureq of obscrved plotted points from a line to be drawn,
he should, f'hooqe the coordinate scales so that the geometrical slope of
the lme 10 be drawn shall be far from unity. The main objection to
theuse of Jog-log and semi-log papers, noted under rule 4, depends on
these considerations. Usually the scales which they foree lead to geo-
metrical slopes differing widely from unity, and automatically many
variations atc covered up.

There are many cases where the precision of one coordinate is so low
with regard to the other that nothing is gained by following the unity
slope rule and where in the intercst of ceonomy of space one should
deviate from the rule (see Iig. 12, also X-eurve of Fig. 1, p. 243).

! Hecht, 8., Shaler, 5., Pirenne, M. ., Seience, 98, 585 {19413,
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F‘IG.)]’.}‘. Bhowing an advantage due to having an approximate geomelrical slope of

\,fu;iity for the importani porticn of a line graph. The points graphed represent

yresults obtained by three observers at the thresheld of vision, using light whose

wavclength coincides with the maximum of the luminosity curve of {he eve, and
show the fractional part of the time that flashes were perceived as a funciion of
the average number of quanta, of light reccived per flash at the cornea. The lines
Tepresent the expected responses of the three observers in case just 5§ (n = 5),
yust 6, and just 7 quanta of the Light used are roquired to produse just pereeptible
flashes. For the sake of separating the curves in graph B, 0,050 has been added to
‘r.].'le observed log abscissa values for n = 6 and 0.350 for n = 7. That the expecta-
tion curves are properly associgted with the observed data is more evident when
one makes use of graph B than when using graph A. (Hecht, S., Shaler, 8., and
Pirenne, M, H., Science, 3, 585, 1941, and personal corrgspondenca,)
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(¢) Labeling the Coordinate Scales. Scales are marked on graphs by
lubeling certain main coordinate lines with the values they represent.
Not all main lines need be so marked. Often labeling every second main
line results in the shortest time of location of a desired coordinate, and
vields in addition the best general appearance for the graph. Whatever
the plan, it should be uniform. One need not begin with the first line
at the left or at the bottom of the graph unless the scale begins at zero,
in which cage the 0O should be recorded. It is suggested that the num-
bers used in marking the seale contain as many significant figures as
the data justify, or as are readable from the curve if, as is usually the(
rage, the data are roughly equally aceurate throughout. That is, 3+50
may well be written instead of 3.5 when it is possible to distinguight\3:51
from 3.50 in the data and on the plot. An essential part of a satisfactory
scale designation is the inclusion along each axis of the name of the quan-
tity represented and the units in which it is meagured, e.g4 Teémperature
in °I, Pressure in atmospheres, ete.  When the logarithm of a quantity
is being plotted, the units in which the quantity itspliis measured should
be stated, o.g., log of Radiancy in watts/cm?, altogh strictly speaking
it is impossible to take the logarithm of anything but a pure number.

(d) Plotitng the Data. Plotting the poipte’to represent the data ab
hand i u simple process, but it should B& dtheparinyoEdl aceurate
tool is dosired. 1f the data to be plotted are experimental or computed
sud subject to computational errorsyeach point should be indicated by a
suitable symbol, such as a orosh. (x) or a circle (O). Different sets of
data on the same graph shuulﬂ%e denoted by different symbols if there
iz a possibility of confusibn> otherwise. When computed data subject
to negligible (:omputatibnal errors arc plotted, the curve necessarily
passes through all jpowits plotted and nothing is gained by indicating
plotted points.  The point symbols should be omitted in such cases.

(e) Fiiting N\vae to the Plotted Points. Two types of cases are to be
considered. «Jh onc, owing to the fewness of the observed points, the
uncertain@%ﬁﬁs to the law of dependency of the assumed dependent vari-
ableinthe assumed independent variable, or the possibility of unknown
variables entering, the plotted points are connected by straight lines.
(Fig, 15.)' Tn the other type, sufficient points arc assumed present to
justify drawing a smooth continuous curve to represent the actual vari-
ation of the related variables under consideration in the regions between
the plotted points. For these cases the curves are generally so drawn.
What is said here applies almost wholly to this type.

1Hardy, J. D., and DuBois, E. F., “The Significance of the Average Temperature

of the Skin,” p. 537 of report of symposium on Temperabure—Its M'casur?mmt an‘d
Control in Science and Tndusiry, New York, Reinhold Publishing Corporation, 1941.
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Proficiency in judging the most likely course of a smooth curve
through & set of plotted points requires practice. In the case of a
single-valued funetion one may always inelude all plotted points on a
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Flt. 15. I].lgstrating the irregular broker line graph. Data, obtained with subjects
mn a calorimeter, show variations in the temperatiures of,various portions of the
human ‘budy with different environmental temperatures, (Du HBeis, E. F., Repor!
on the Tempernture of the Human Body in Heolth and Disease, in the ’sympo.:sium on

Temperature, Its Measurement and Control in Sci.
" , 88 rolin Scie ; New York
Reinhold Publishing Corp., 1941.) s nd ndstry. .24, Now Hert

i;ngtle smooth curve 9f many inflections, Tt is absurd, however, to think
1at such a curve will represent the true relation between y and z, for
many curves can be drawn which will pass through the plotted points.
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Usually a much better curve for representing the relation sought is
obigined by following the principles listed below.

1. The curve should be smooth, with few inflections.

2. The eurve should pass as close as reasonably possible to all of
the plotted peints.

2 The curve nerd not pass through a single point, much less
through either of the end points. Very often they are end points
beeause of limits in the accuracy of the instrument or of the method
ueed. In such cases less weight should be given to them than to the
other points of the plot.

4. The curve should usually, but not always, contain no inexplig:
able discontinuities, cusps, or other peculiarities. N\

" 5. When taken in moderate-sized groups, about one-half of the
plotted points of each group should fall on one side of yhefcurve and
the other half on the other side. - AN\ '

Tn addition to the pencil or the pen, transparenkframes such as the
ordinary so-called celluloid triangles, irregular CUEVES, and ships curves
arc desirable for eurve-drawing. In place of the)nsvnamed instrument,
certain adjustable curves may often be qoh}*c'niently employed. The
transparvency feature is of decided importetite-dnliconngctignnwith the
application of the principles stated a.bpvé.

Granted the desired instruments,ithe procedure to follow in locating
and drawing the best curve cofists of (@) loeating with the unaided
eyn, or, perhaps with the ai@bf‘ﬁxed transparent frames, ccrtain points
through which or close te which it secms that the curve should be
drawn; (b) drawing liglitly through the selected points, in pencil and in
a preliminary way Honu “ection of the curve and then successive adja-
cent sections ; and)g) drawing the desired curve in jts final form, chang-
ing where necefsary the lightly drawn preliminary curve in accord with
the pl'incip],g{a§ﬁa-ted above.

In the {Inéiwing of both the preliminary and final curves, when a shift
or aehhnee of a frame is made, one should see that the frame in the
adjadent shifted position permits of the smooth joining on of the new
section without a sharp change of slope at the junction. The satis-
factory carrying out of this procedure may be readily judged by the
squint fest, In making this test, the eye is held close to the plane of
the graph sheet in such a manner that one can sight along the eurve.
If the adjoining sections have not been correctly matched, a sudden
change in dircetion of the eurve will be quite noticeable. Figs. 164 and
168 represent the same data. As regarded ordinarily, both curves seem
smooth and satisfaetory, 7The squint test, however, reveals that one
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of the curves fails to pass the test. Where the curve iz to be differ
entisted graphically, the need for its application is great. As will appear
in Chapter X1, a suspected kink in a graph of the data of Fig. 16 was
the source of a diffcrence of opinion that was later settled by least-
sguares treatment.

07—}
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T1¢. 17, A combBiged graph, as presented by Hecht, showing for various individuals
1he hrightgﬁss diserimination factor AB/B as a function of the logarithm of the
hrightnegs B,

K'J\k% in curves are not always to be avoided. Their presence may
reveal important processes or changes of process. An interesting case is
furnished by the work of Tocht.! It concerns the explanation of the
observed variations in brightness discrimination, AB/B, where AB rep-
resents the least perceptible change in the brightness B, as a function c_)f
that brightness, Results of previous reliable work relating to whfxt is
commonly referred to as the Weber-Fechner law was combined in a single

' Hecht, Selig, Proc. Natl. Acad, Sei. U. 8., 20, 644 (1834); . Psychol. (6) 33, 161
(1936).
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graph (Fig. 17). Except perhaps for the results of Aubert, there seems
no indieation of a kink or break in the curve. 13y the proper choice of
scales and with the aid of an assumed explanatory law, Tlecht, however,
found significant breaks in the data for each observer and made them
obvious. We here consider the observations reported by Blanchard!
His data, disregarding for lack of space the value for the lowest bright-
ness, are replotted in Fig, 18 on the same hasis as for Fig. 17, hut with
scales so chosen that the presence of a kink or break might well show up.
Except for the single value of AB/B eorresponding to —3.17 for k}g B
there seems to be no indication of a break. Most workers in this field
passed over it as just another rather unsatisfactorily (‘letf’l'mﬁmd point,
Hecht, however, believing that, the two types of visual prOCesses corre-
sponding respectively to the cone and the rod receptors of the retina
might well follow different laws, sought for indication@ih such b ghtness-
diserimination curves. With log AB/B rather than AB/B graphed as
a function of log B (Fig. 19), the evidence bopanie unmistakable. Not
only that, but there were verified the two thietetical cquations,

&
= (1;4_‘1_) 6]
B T \'Vgs

A . www_dbraulibya‘r“;}.bl'g.in
which with properly chosen vakuck for ¢ and K holds for the rod or low-
brightness region, and N

AB 1 1\
(OB ~° 1+ 73) v
hE)Ids for the cone or high-brightness region. 'The kink,
proper function graphed became a broak, is highly im-

which similarly
which with the’

P?rtant he@- Without doubt other similar breaks sre waiting for
discoverers, |
 Whebrthe curve to be drawn is known or judged to be a straight line,
its gaura )

e may he located by moving about ameng the points a stretched

N : e or, best of all, &
raight line scratch on the under surface of a transparent frame. In

any case the .ﬁnal line should be drawn with the aid of a straight cdge.
If & curve is to be used for the exact determination of corresponding

v‘alues' of' y and z, or if it is to be used for obtaining highly precise deriva-

tives, it is necessary to make the eurve agfina a line ag 1% practicable.
Some autl‘zors, in drawing eurves among plotted points, draw them in

segments, with a break occurring wherever the curve if continued would

eut through & point symbol. The questionable argument in its favor scems
! Bianchard, Julian, Phys. Rev., 11, 81 (1918).
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Fra. 18. A graph similar {0 Fig. 17, but with much more favorahleseales for showing
kinks or breaks, in which only data by Blanchard are @gr&phed. (Blanchard,
Julian, The Brightness Senstbility of the Relina, Phys. e, 11, 81, 1918.)
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o0 be one of artistic appcarance. For the qualitative graph, that suf-
fices. For the quantitative graph, however, It secms wise to continue
the curve as a line regardless of the point symbols intersected. Where
the squint test is of value, the curve must continue thus uninterrupted.

(f) Preparing o Descriptive Caption. The caption accompanying a
graph when completed should include an accurate deseription of what
the graph is intended to show. Iow complete this should be s some-
what a matter of opinion. If the graph is to be u part of & pulbilishable
report, it should be remembered (1) that graphs and tables are often
the portions of an article which excite the intorest of a possible xoader;
(2) that time is saved in the reading of an article if suitable deseiiptive
captions are found adjacent to the figurcs; (3) that certiih Material
incorporated in a caption may appropriately be left out of “the body of
the text: and (4) that in referring to a paper some t;imé after o rcading,
a reader hopes to find certain quantitative data fﬁh}a,f it contains in its
figures and tables, and that a search in the bod§n6f the paper for that
which may appropriately be placed in a captidpe is likely to be a source
of irritation. On the other hand, one cag\tardly include the whole of
the text in figure and table captions. AW

(o) Ackmwledging\m%cmraqﬁig{_#ﬁ,_y £ Wherever the data for &
graph are taken from a published report or the work of another, the
source should be plainly stated™in thc caption. An exception occurs
where the data have been syidely published, c.g., the Maxwellian distr-
bution of molecular spegds'for a gas. Wherever a graph by itsclf is pre-
sented as a report, iiihaﬁld carry the name of the author and an appro-
priate date, \

6. Summary.» s devices for presenting data, graphs have many

advantages O\ie}- other forms of presentation. Two classes of graphs are
considergd":‘\the qualitative, including those intended for a convenient
and pifttwesque way of presenting data, and the quantitative, incuding
t-hosg;:intcnded for use as tools, either in research or in operating or con-
troling mechanisms or proeesses.
) “There arc many types of qualitative graphs which possess the attri-
bu'tes of clarity, simplicity, and attractivensss desirable in graphs of
this cla,%s. Regardless of type, each such graph should contain an
appropriate and eomplete descriptive caption.

Though the quantitative graph usually takes the form of a regular
curve, there are many different types in this class since the curve may
%ten be pl(?ttc_d on any one of about six different general types of papers.

1o quantitative graph should be carefully drawn and certain general
{Zfl‘ﬂl(‘.lples of. good construetion should be followed. These principles are
'1sted and discussed in detail for each of seven main steps in the prepata-

N
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tion of o satisfactory graph: (1) choosing the graph paper, (2) choosing
the coordinate scales, (3) labeling coordinate scales, (4) plotting the
data, (5) fitting & eurve to the plotted points, (6) preparing & descriptive
caption, and (7) acknowledging the source of the data.

PROBLEMS

1. Following the instractions given in the text, and using the data given below
showing the radiancy of tungsten \as 5 funetion of temperature, plot curves showing
# = f(F1 on ordinary yeplangular graph paper, & = F(T) on log-log paper, and
log @ = filog T) on ordinary rectangular paper.

T ® T " < \..}
1600° K 7.74 watts/em? 2400° K 55.70 yratts/cm®
1800 14.15 2600 806
2000 23.65 2800 11278
2200 37.20 3000 15475

9, Using the following data’ showing the brightness of im{%descent tungsten as &
funetion of temperature, plot with care four curves on one ghnore two-page sized or
larger sheets of rectangular graph paper. Use ships gl@tﬁér equivalent curves and
apply the squint test. For the firat graph plog’B%= FT); for the others plot
g B = filog T, but choose the oordinate scales 36 vield approximate geometrieal
slopes: of 1.0, 0.5, and 0.25. Keep this p B%Ef‘f&‘ﬁgé'qw@E?Spﬁ@g.ﬁﬁerentiation

problem in Chapter IV. N :
T B AN T B

2000° K 20.0¢6yem® 2600° K 345 ¢/cm?
2100 3~5\~g 2700 405
2200 M1, 2800 690
2300 £>1160.1 2900 950
2400 N\ 156.0 8000 1270
2500 “\x.\“’ 234.0

1 Forsythe, W«\J{\:m{d Watson, E. M., J, Optical Soc. Am. 24, 114 (1934

% Tdern. N\

) )

N

\‘:



CHAPTER III
REPRESENTATION OF DATA RY EQUATIONS

1. Introduction. It is often desirable to express In equation form the
relationships between variables which may be suggested by graphs or
tables. On the one hand such & derived equation or one orghgse of its
coefficients may represent the objective of a research. On the other
hand, it may be desired as an aid to differentiation, i.ntng"sftion, or inter-
polation, Moreovor, an equation is a compact, easilyPxemembered, and
convenient form for the presentation of data. Métsﬁods for obtaining
such equations will be diseussed hore., Howevernbnly forms nvolving
one dependent variahle will he treated. Pgr@dic curves will be taken
up in Chapter V; distribution functions for Statistical data in Chapter
VII. \Y;

2. Rational and Empirical Equati’on's:' An equation for reprezenting
experimental daty ig M&dvt@bﬁé“f%%%ioigﬂznis derivable theoretically.
For example, the equation AONY

“3 . d
AN G = asin f1]

8 J
relating the throw, drok & ballistic galvanometer to the electric charge,
4, causing the throgh, is rational, since it is based on established physical
laws. In this eagéthe finding of an equation reduces to the finding of a
value for the;{onstant, a.

An equatign for representing cxperimental data is said to be empirical
if its fornp\has not been derived theoretically. Tn the process of obtain-
ing such*an equation, one mugst first, find a suitable form. Given that
fqrms, the further procedure becomes the same as that for the rationai
2qhation.

3.‘ Choosing a Suitable Form for an Empirical Equation. The idcal
empirical equation is one that Tepresents the experimental data closely,
yet has only a few arbitrary constants—two generally opposing charac-
teristics. As g tonsequence a choice mugt sometimes be made involving
a sacltiﬁee either of simplicity or of precision of fit. On the other hand,
2 chmf:e must sometimes be made from two or more funetions which,
in & given case, upproach the ideal form about equally. There is no
straightforward method of obtaining a most suitable function for a given

56
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set of data. Usually one simply plots the data, represents them Hpproxi-
mately by means of a curve, and, guided by experience and « knowledge
of analytic geometry, makes a guess as to the form of the equation, if,
on being tested, this form is found unsatisfactory, a new giness iy made
and tested. This process ig repeated until one ix satisfied.  With the
ease and precision of such testing in mind, it is usaally advisable, where
possible, to select coordinates which yield as nearly a straight lino as
possible,

The seloction of such eoordinates and the drawing of a hespseurve
whose equation is sought brings up the question of the changed relia-
bilities (more precisely weights) assigned, in effeet, to the vagiow plotied
points, which accompany changes of coordinates. The édﬁnif‘ioance of

- weights, how coordinate changes affect them, and the, ‘aceount that
should be taken of changed weights will be discus<otin Chapters 1X
to X1, ,'“>\

To assist the less experienced, the curves of I g to 6 are presented as -
examples of the shapes of curves which maybeobtained from several of
the more common types of equations by, yarying the arbitrary constants.

4, 'fI‘esting the Suitability of an Fuipirical Function to Represent a
Set of Data. Fortunately one need not luate the constants for a
partieular form of eqﬁ“ﬁ‘ﬁfi‘gﬁd g%ﬁé‘%&%ﬁ%ﬁ?ﬁot that form fits the data
satisfactorily. Certain prfﬂimiﬁ&ri’ tests often not only give the infor-
mation desired, but, help later'on when the constants ave to be calculated.
For simple types of equ@j@nfﬂ with only one or two arbi trary constants,
the following graphical {{gst is convenient, For more complex forms, &
tabular test may he fised.

(a) The Gmp};:ic(:;l Suitabe'ifity Test, The procedure herc consists of
three steps. MO

. 1. W;'_%&I;'\t‘he assumed relution, f @yab) =0, in a form that is
!inem;{(n- respect to two selected functions, F; and Fg, which do not
anlgtle the arbitrary constants, a or b, thus

Xe) Fi = 4 4 Br, 2
\ Of these two functions, often one may involve x only while the other

involves y only, and the hew constants 4 and B will be funetions of
a and b only.

2. Caleulate Fy and Fy
of values for z and 7.

3. Plot Fl ass function of Fo.
the assumed equation would gee
tainty is obtained by taking int
and F,,

for a few, four say, widely separated pairs

Insofar as a straight line is obtained,
™ to be satisfactory. Greater cer-
0 account the remaining pairs of Fi
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To illustrate, we shall use the method to determine whether or not
the data of Table I may be represented by an equation of the form

y = ae’” (3]

TABIE 1
Data FoR [LLUSTRATING 4 (GRaPHICAL TEST FOR THE SUITABTILITY OF AN EMPIRICAL

Fuxerion

O\
I 1 2 3 4 5 6 | 7 8 9
E— P s \:
y s |22 |emd |37 | 445 |53 |6.92 | 8.85\D0.97
log i 0.250 | 0.350 | 0.438 | 0,573 | 0.648 | 0.725 | 0.840 | 07947 1.040
Ye 1.76 2.21 2.78 3.51 4.39 5.52 | 6.93 {AB.Y71" | 10.94
m\\.

Eq. 3 written in a form similar to Eq. 2 hecomes O
2p)
log y = log a + (b log g™ [Ba]

in which log i corresponds to Fi, @ to Fg, J0g % to 4, and (b log e) to B.
Plotting log ¥ for four selected points,xgmkﬂﬁbahm&ainyl—ﬁgqu as a func-
tion of 2, a straight line results. Th(g.éhbice of Eq. 3 scems satisfactory

L2 5

ol o /
w \ > /

'~‘|.=>
& /
AN 04

0.2 7

05 3 * 8 & 10

@
Fra. 7. A plot for testing whether Eq. 3 fits the data of Table L.

for representing the given data. This conclusion is verified by the fur-
ther plotting of points and finally by comparing the observed y-vglues
with the computed values (shown as y. in Table I) eventually obtained.
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Methods for determining the constants of the equation y, = fix) are
given below,

Certain two-constant equations, such as ¥ =a(l — ), gy = + b,
ete., which cannot be written in the form of Eq. 2 ecannot be tested by
this method. Among those which can, however, be so tested are

¥ = ar (4]
y=a-+bx (5]
¥ = ab® \[ﬁ]
¥ = aet &>
N
¥ = azx® O g {8]
x D :

= i 9
y a -+ bz "‘\ kl
y =T ete. N [10]

(by The Tabular Sugtability Test, When'rb‘)}é than two arbitrary con-
stante are involved, a tabular method a9 donvenient for testing an as-
sumed equation form. The proceduredepends on the equation assumed,
but in general it consists of (@) ng&i%;ilig a plot of the experimental data,
(b) constructing a t-a.hlgwﬁg(ﬂ&@hﬁ}fﬁr@g}@;@)jﬁbrming certain successive
differences, and (d) examining, the final set of differences for approximate
constancy, the criterion:Qf}sllitabi.lit-y for the agsumed equation.

For data already i alsnitable tabular f orm, steps g and b arc unncees-
sary. Procedures atllél\e.riteria for testing sevoral of the more common

types of equatiomy wre given in Table T1.

Just what, §ut§$e§sive differences are to be obtained is not difficult to
determine.,\(;?o sider case 1 of the table, If
O
thendlso
\~\d YAy =a+ble+ Ar) + o + Ar)? +- diz + Az)®  [12]
ax

Y=a+bx+ cz® & gd [11]

Ay = (bAr + cAx® + dAgd .. )+ QeAz + 3das® 4 )z
+ (3dAr 4+ - )p? [13]
Sinee Az is to be kept constant during the test, Fig. 13 takes the form

Ay = a' + bz ¢t [14]

of which o', ¥, and ¢’ are constant,
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Repetition of the above procedure leads similarly to

Azy = g _+_ b [15]
and finally to
A3y = q' [16]

This lust equation shows that, if Eq. 11 holds and Az is maintained con-
stant throughout, the third-order tabular differences will be constant.
C'onversely, if such third-order tabular diffcrences are found constant
except for uncertainties of measurement, ete., the data may be repre-
sented by Fq. 11. O
TABLE III Ve &
oA
TaBULAR TEST FOR THE SUITABILITY OF AN FQUATION OF THE ]."ORM‘E}'! =0 + bet

o REPRESENT CrrTAN OBsERved Data -\
< 8

z? .i"
Obzerved Values Taken from Graph COD‘{B}UIU_UHS Uf.
Suceessive Differences
| AY;
nTé . |
\
x ¥ z ¥ WA log (ay) | & log (ay)
- | i —
0.50 ‘ 17.3 0 165
= o 1.3 0.114
175 | 1s0 | wwidbpadliprgryiorg.in 0.080
1.6 204
2.75 2.0 | 2NN 195 097
\\"’ 2.0 .301
3.50 225 M V3 21.5 079
2.4 .380
4.50 25N 4 23.9 .097
K73 . 3.0 477
5.25 | [[)78.0 5 26.9 .01
O\ 3.7 568
6.00, 30.5 6 30.6 085
o 4.5 .653
\'6150 33.0 7 35.1 .103
] 5.7 | .T56
7.50 28.0 8 40.8

Ag inSpe.ction will show, the underlying theory for the other cases of
the ta‘ble is much the same. Consider case 7. The equations corre-
sponding to Egs. 11 to 16 are

¥ = a+ be*? 117]
Y + Ay =g - becr(ﬁ--m:l =at be"’“e”"“ [18]
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ﬂy = becrx(eﬂlﬂm—l) [19]

In Ay = In[b(e”**~1)] + 'z =V + =z [20]
A(ln ﬂy) = C"A:B = I}” [21';
J

Many o‘r.h(':f‘ functions may be handled similarly. In the case of still

oth.er fulnr_-t%ons, there seems no possibility of such treatment as akcri

terion of suitability of cquation form, e.g o
£

y = ae—fm _+_ Ce—Fdx [22]

N 7
36 f/ ¢ \ \\

32
Y z8
—_— rg.in
24 —-—-"’“
4 .i:\
AN
20 __.._\_,_._._

£ \ “
\M ./_ R A DR IS

NI T
~) 0 2 4 6 8
Fos, ) N
10,8/ A plot constructed to test the suitability of Bq. 23 to represent the data in

the first, two columns of Table 111

To illustrate the use of Table II, we shall test whether or not an
equation of the form

y =a-+ b [23]

%ill-_n suitably represent the data in the first two columns of Table IIT.

;ve first plot y as a function of z (Fig. 8). Then, using the curve, we

ist values of y corresponding t0 equally spaced values of @ (Table I1T}.
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Next we obtain, in tumn, the successive differences, Ay, log (Ay), and
Alog (Ay). The values of A log (Ay) are essentially consiant, indicating
for Eq. 11 a certain suitability of choice.

b. Evaluating the Arbitrary Constants. Once a satisfactory form of
equation has been chosen, or, in the rational case, derived, the problem
has been reduced to finding suitable values for the constants. Numor-
ous procedures, varying in ease and in accurscy, arc available. The
most accurate is the method of least squares, discussed in detail in Chap-
ter XI. Bince it ordinarily involves much computati on, other methgds,
less aceurate but also less cumbersome, are very much used. Froguently
one of these methods is used to give an approximate result }y\]’ll‘@l} may
be later improved by the successive approximation method 0¥ in eases
where the labor is justified, by the method of least sqdares. If it is
known in advance in any case that either the successivé Approximation
or the least-squares method is to be used finally, edhsiderable time may
often be saved by definitely dealing at first wt\h only rounded con-
venient values for the desired constants. D>

{a) Straight-Line Graph M eihod—Eguatﬂo@ with Two Arbitrary Con-
stants.  Tor the simple equation with ogdor two arbitrary constants,
the constants can be evaluated by a_eortinuation of the graphical test
for suitability outlined above. The method is best explained by an
illustration, If was showpthaddhrlaty of Zable 1 may be represented
by ¥ = ae® because log y plotted against z gave a straight line. The
slope of this line is (b 10g{e~)’.\ The intercept on the (log y)-axis is log a.

From Fig. 7, the sl()pe\i'&fmmd to be 0.0991, and the intercept, 0.147,
whenee - \,

%4

0.0991 _ 0.0991

4 ‘.\H .b = = — = -
A, loge 04343 0228 (4]
and N>
A a = 100147 — 1 403 [25]
The.ﬁ\ﬂai' form of Eq. 3 is, then,
O y = 1.403¢0-2282 [26]

Values of y calenlated with the aid of this empirical equation (listed in
Tablo T as y,) agree well with the listed values for y.
In obtaining the slope of the line, the familigr two-peint formula

b=y2__yl
T2 — I

may be used. Here (z1,1) and (x,
line, but for greatest accuracy they st

[27]

%2) may be any two points on the
would be as far apart as practicable.
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For convenience they may be taken as the interseciions of the curve
with two main a-coordinate lines, so that (z3 — %) shallbe a convenient
divisor. Similarly, the intercept, a, when it eannot be read directly
from the plot, can be ealeulated by the two-point formula

1Tz — YT
= T

%5 — 21 [28]

The advantages of using the same two points in evaluating @ and b are
obvious. Those familiar with the general determinant methed of find-
ing equations will convenicently substitute the given values for « and 4 <

in the determinant equation AN
{ N\

y =z % 'l:\

gy @ 1|=0 [29]

¢*¢
yo T2 1 \

and simphfy. \

The extension of the above method to Eqs. 4 to 'Ia‘ﬁsted above should
be evident. N\

{b) The Straight-Line (raph Method—l?;qﬂ@iions with Three Arbitrary
Constanis. To cvaluate the constants ofa three-constant equation by
the strajght-line graph method, one mi;é‘,t’ﬁrst climinate one of the con-
stants and then treat the resultant ﬁxvéi‘%ﬁﬁﬁhtﬁ%t{wat@m@idescribcd
above. The scheme to be useddihcliminating a constant depends on the
type of equation being ﬁttedgfh’lethods follow for three of the most com-

mon types of equations N

y:a—l-bx—{—cxz [301
\<
N y=a+ b [34]
and \Y
~§ 3 y = a-+ b’ (32]

~ Tor ,3@:3:,‘1.\;;[1@.1111& methods of treating other three-constant and man}:
foutsconstant equations, the reader is referred to more complete Sources.

(1) y.—_-a—{—bx—]—cxz

The equation is that of a parabola, of which a i the g-intereept. If
data are given close to ¢ = 0, or it the y = flx) <.3urvc may i}:e safely
extrapolated Lo the y-axis, o may be detormined dircotly. It s then &

ork, John Wiley & Song, 1017,

! Running, 1. T., Empirical Formulas, New Y
: ) ’ New York, John Wiley & Sons,

i‘ipk% I., Grophical and Mechanical Compulation,
918,
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simple matter to treat (y — @) as a new variable, 4" say, and (o evaluate
b and ¢, as shown above, using the form
!
Y —b4e [33]
z
When o cannot be thus cvaluated, we may possibly shift the origin of
the coordinate gystem to some eonvenient point (g, ¥} in the neighber-
hood of the actual plotted points, through which it has been decided that
the curve shall pass. The coordinates (', 4} of the observed poindsin
the new system arc given in magnitude by (x — xo, ¥ — w0)- Sil{ce the
curve now passes through the origin it takes the form N

e
. y.! — brxr + c’x’2 (x}‘: [34]
which may be rewriften as »‘j\i'.
Y i
; = b + o'z :.\\,: [35]

Values for ¥ and ¢’ are found from a pl\ot of 4/’ = f(’). Then ¢ b,
und e are given by o\ o

¢ = C,' }: > [3(]]
www.dbrg_ﬁ{’ﬁ‘t;targc%@.in [37]

and 24
) \ a’\z Yo — bz + ¢'mo? [38]

The method will np} be illustrated, since it is generally less acceptable
for parabolic eqfations than the scleeted-points method, combined, if
necessary, xy'tih:the successive-approximation method.

O\Y
.\,\\w (2) y=a+ "

‘ H\.ém the censtant g represents the y-intercept of the curve if ¢ is posi-
AL%¢; or of an asymptote paralle]l to the x-axis if e is negative. It may
\5dn€1et-i.mes be obtained directly from the y = flz) curve. Usually 2
sa.t-ls.factory value cannot be so obtained, and we must evaluate or
eliminate it by some alternate method, Probably the simplest suitable
method of evaluation procecds as follows.

Select from the experimental curve, three widely separated points,
(#1,41), (xz,yz), and {(xz,%3) such that

Ty = {zy-25)"% 39

Then 3 = (z1-29) [39]

brg® = (b, buy®)'t
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or, since for every point on the curve, b2 =y — @

Yz — & = V(yl“a)(yz—a)
whenee
2
Wiz — s
4= 40
y1+ vz — 2ys 1401
We may then treat (y — a) as a new variable, 3/, and write Eq. 31 as
y' = bx® [41]

for which b and ¢ can be evaluated by the straight-line graph method

for two constants. If the plot log i’ = f(log z} is concave down\\-'aﬂlz.
'\

the computed @ is too small, and vice versa. Corrections for such.ertors
may be obtained by the method of repeated trials. \

N
(3) y=a+b" K7, 0

o\ 7
When this Lype of equation fits the data, the valudof @ cannot be
read direetly from the curve of = fiz), It can, h@igver, be caleulated

aa follows. (v
Choose threc widely separated points on the'gurxre such that
23 = o e [42]
Then A%

{log c)xg = %[(lqg:sé)%;w_tr,ggga?ﬁ:fﬁlary.org.in [43]

or, since for any point on the c\tirve,

Ny —a)
log b= log 2 [44]
3o~ — ) (s — @
10gan A 9 _ 1 [log by -2 7 2 +log —""2—5—_]
z..\ﬁ"“'—, )
© T
R\ —lo \XEI_'_‘P y2 " ¢ [45]
Ay TOENT b
U 'Gé; N/ -
B{K Yz — @ = \/@1 —a){yz — @) [46]
and ,
YT ¥ [47]

a4 =
g1+ Y2 — 28
As bofore, we may then set (¥ — a) = y', whereupon
y = be* [48]

for which b and ¢ may be ovaluated by the straight-line graph meth‘od
for two constants given above. If in the plot of log ¢ = f(x), the line

Q)
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is slightly concave downward, the computed a i too large, and viee
versa. As before, corrections for such errors may he obtained by the
method of repeated trials.

(e} Method of Selected Points. The proecdure of 1his mcethod consists
of four steps.

1. Plot i as a function of z and fit a smooth eurve as carclully as
is needed.

2. From the curve choose a number of points equal to », the fum-
ber of arbitrary constants in the equation selected to represemt the
data. For convenience these points should lie on main r4bedinate
lines; for accuracy they should be widely separated \\'il.l'mht lyving at
the relatively uncertain extremes of the eurve. " N

3. Bubstitute in turn each of these n pairs of #7@nd y-vulues inte
the chosen equation, thus obtaining a set of AMGUations with » un-
knowns,

. . A, :
4, Bolve these n oquations simultaneouély Tor the unknowns, ie.,
for the desired arbitrary constants.

S 3
[\

When the chosen equation is transpnﬁdental with three or more arbi-
trary constants, step 4 may prove tosbe very diffieult. When, however,
the equation is, or can be made,}]i_néar with respect to its arbitrary con-
stants, the proc-edl1rewl¥ié”y%{})gal§%fgﬁfﬁéar%§ﬁ the use of determinants.
Steps 3 and 4 then combi}\é Lo a single step.

Mustrating the simplifige procedure, consider the curve of liig. 9, for
ﬁhﬁém wi

which an equation th respect to its arbitrary constants, of the
type "
&

¥=a+br+c? [49]

. . .O\u

is demre{;"“\ff‘he first step of plotting hus been carried through. As the
secondq&( P, we select the points where the ey

r-coprdihate lines at 4, 8, and 12. The corresponding y-coordinates are

,8\.\1;}].2.8, and 16.0.  As the third and fourth steps combined, we write
\the determinant equution

I've Crosses eonvenient

y 1 oz g2

81 1 4 18
128 1 8 64 =0 (0!
160 1

12 144

Simplified, this determinant vields

¥ =190 + 1738 — 0.0460,2 [51]

(]
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as the equation sought.  Kguations thus derived should always be tested
for crrors and for goodness of fit. Substitutions, accordingly, of 4, 8,
and 12 for = show that no computational error has heen made in obtain-
ing g, 51. However, tests for z = 2 and z = 18 yield values for y
that do not check with the eurve as drawn. Two possible conelusions
may be drawn. (1) Tt is dangerous to extrapolate beyond observed
reg.ions. (2) Perhaps the desired form of equation is not capable of

20

e N

1~ LN

~ N
16 \ ™

w1z / O
/ >
Vi L
8 N .
—/ X '; ‘wrm praullbrary.org.in
42 :"’,\ 10 14

\\ o ® .
Fia. 9. A parabolic curve whose constants may be evaluated by the selected ponts

O method.
PY;

satisfactoril -':ﬁxs.gescnt-ing the data, and onc sbould try anoth_er formd.l
Reference to%ﬁgs. 1 to 6 reveals & similar curve In curve A of Fig. 6 an
suggestathat an equation of the form

7'\

O~ y=alna [5d]

might satisfy. Actually, however, additional tel.'ms, gimilar to those of
Eq. 51, are needed for a satisfactory represcentation. .
Fssentially the same procedure may often be used for le:ls Ol;\fllilii
cases where linearity with respect to the arbitrary constaptsf 1eir.1£}rem of
docs not exist, but where linearity with res—pect to cortain uftL Ell form
those constants docs exist, Where the desited equation 18 of the 1o

y = asin (ol + ¢) [52]
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with y and of as variables and a and ¢ as the unknown constanis, o
change of form yields

Y = @ co8 ¢ sin wt + asin ¢ cos wt [33]

of which a cos ¢ and nsin ¢ are now the unknown constan-s in Hnear
form. As such they may be obtained easily by using the aho e method,
To obfain separate values for @ and ¢ thereafter, we make use of the
two abvious relations

a = (a® cos” ¢ + a? sin? ¢)* (54)

and o
o _pasing R
¢ = tan P Ko [55]

Where the desired equation is, for example, of the 't-yée 3

N
y = act= e ?) [56
linearity with respect to arbitrary constants may be obtained Ly chang-
ing the form of the equation to ‘O
Iny =Ina + bpPeer? (57]

Obviously, determining In « is equivaleént to determining a. For equa-
tions like Kq. 56 which are made linear by writing them in linear form,
it will usually prove adeﬁtd@'é&#l?ﬁaﬁi}%ﬁr&“ﬂo plot In ¥ az » funection
of x rather than to plot ong/arishle as a funetion of the othoer.

As a second example 'iﬂu}*tra.ting this very important method, let us
fit Eq. 56 to the dat:}\b.f"[‘a.ble IV by the method of sclected points.
An examination of Jthe range of y-values in Table TV shows the im-
practicability of t¥ilig to draw a curve of ¥ = f(x) from which to choose
the points with wifficient acouracy. Hence, we follow the suggestion of
the previousparagraph and write the equation in the linear form of
Eqg. 57,.(\)&\ Ven better for computational purposes, in the form
N\ logy = log a + (0.4343b)x 4 (0.4343¢)a?

<~\; " . — ar + b.rx + C!:L'Q [58]
We then tabulate values of log y and plot them as a function of 2, Fig.
10. Remembering the convenience and accuracy suggestions of step 2

above, we seleet the three points (0.250,0.356), (0.550,1.031), and
(0.850,2.158). Tf, further, we make the simplifying substitutions

, _ & — 0.550
¥ T 6300 (59]
and
¢=logy — 1031 f60]
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we obtain a simple expression eapable of easy evaluation, namely

2 1 x’ $!2
—0875 1 -1 1
=0 (61]
0 1 o0
41,127 1} 11
3.0
25
2.0
=
331.5
1.0 _‘%:3\_._
\\
0.5 x:‘.\ 2 ﬂé'_'—____'___'_'__'_F_-_'
&
K ’it?té I I S RN SR o
i\;; 'U'%l 0.3 0.5 0.7 0.8
QO *° : . ;

Pis. 1. A plot showing log ¥ = fiz), Table 1V, for obtaining an equation by the
sclented points method.

To one tamiliar with determinants, inspection yields the solution
7 1.127 — 0675\ o
Y (_1.12; -; 0.675 )x . ( 2___) .

- 0.9012' + 0.2262" [62]
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Bubstituting for # and ' in accord with Egs. 59 and 60, we obtain

log y = 0.1388 4 0.2411z + 2.51114° [63]
and e s
¥ = 1.3773(0.35523 + 5.782x%) [6—1-]
TABLE IV
Dats For TLLUSTRATING THE SELECTED Porxts MerHon or FINDINe AN Farinican
Eguaron ~
[The prime of ¢, is intended to indieate that these compnted values are first a.ppwximatifm{: oly]
! '\ e
x Y log » ¥ log o' log v log i’
0.125 1.595 0.2028 1.615 '0,2'[]{’»2\~ —0.0054
.250 2.239 0.3500 2.260 038559 — .0059
.325 2.095 0.4764 3.087 ) %4824 — 0080
450 5.626 | 0.7502 5.608 |7/9.77557 — 0083
575 12.97 | wi08braplibidrglorghin 1.1076 — 0007
675 27,02 | 1.4450 27007 | 1.4455 + 0004
.750 53.88 1.7314 | <6395 1.7320 — 0006
850 141.7 2.1514 :1438 2.,1579 — (65
9325 320.8 2.5062 N 3238 2.5103 — .o0tl
975 571.3 2.756’3 576.7 2.7610 — 061
AN

¢ \J

&
Values of y and log y\c.alcula.ted by Eq. 64 arc given in Table TV in

the columns headednyy’, and log 3/, Inspection shows that the com-
puted log ¥, Yalubs arc uniformly too great. A value of log @ less by
0.0038, yielfj.i\q@*i.?»% for a itself gives a much better check betwoeen ?f
anc! y'.. However, even with the suggested change, it is evident that the
fit is r;o.p}s satisfactory as it might be. With the —0.0038 change as-
sume@ Iﬁajde, values of log y — log ¥, are uniformly too great for low
?;m[ #or high valyes of z and too small for intermediate values. The

rther_applieation of the successive appreximation method as. shown
later, yields corrections which eliminate this tendency, ,

For equatiqns with more than two arbitrary eonstants, the method
of Se]f?f!ted points is recormmended whenever applicable f(;:' it is gener-
ally simpler to carry through than the straight-line grai}h method, and
more accurate than the method of averages to be deseribed ,

(d) Method of Averages. This method is g selected-pb{,‘ms method based
?}? & p?artmular method of sclecting points, which ean ho used only when

Ne type of equation dealt with ig linear with respeet to its arbitrary
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constants; i.c., when the equation may be written in the form of Eq.
49. Ttis also known as Norman Campbell’s zero-sum method,! so called
beeause, for the straight line, it viclds zero as the sum of all the devia-
tions. For this case with points randomly and similarly distributed
with respect (o the straight line to be drawn, this method vields results
comparable witl those obtained by the least-squares method (Chapter
XD).

The procedure for the equation, ¥ = f(¢), containing n arbitrary con-
stants consists in (1} dividing the N ohserved pairs of z, y values into ¢
n approximately cqual groups, choosing for each group only pairs that
eorrespond to adjacent points when graphed; (2) averaging the z-and
the g-values for cach group separately to obtaln n pairs of z, ¥ “ahies;
(3) with these average , y values to describe selected pointsgugihg the
selected-point method as described above. D

The results depend somewhat on the way the Urigi'fl}l N pairs of
values are grouped and accordingly cannot be expeeted to yield the
most precise results in the general case. This me’b‘h\ld does not require
a graph and generally speaking is much sh@ﬁfﬁtdﬁﬁi\ﬁﬂﬁ&ﬁﬂ!ﬁ%ﬂ#ﬁhws-
Howuver, when one departs from the straight-line equation, for which
it is particularly acceptable, it still servegwell in giving a first approxi-
mation which may be improved by fufther approximations.

Let us apply the method to data:’frfablc V), given by Osborne and
Meyers 2 of the Bureau of Standards in an attempt to obtain an equa-
tion for nse in dnLurmining'the\boiling point of water as & funection of
barometric pressure.  Eorthis purpose only data in the neighborhood
of the normal boiling point is needed. The successive-difference test
shows that s three terid "equation of the type

\\\’} — Ty + alpo — P) + blpo — B’ [65)
in which théj;bscript () refers to standard conditions, namely, 100° C
and 760 mm-Hg, should suffice. Certain data as seleoted are shown
grofped in eolumns two and three. The avcrages are shown in the
text two columns. Tor carrying the work further, it is desirable to
Introduce new variables | '

, b= 720 mu-lig [66]
60 mm—Hg
T — 08.486°C " 1671

Y="T3000C°

" Phil. Mag, VI, 89, 177 (1920).
*Osborne, N. 8., and Meyers, C. H., J. Research Nal- Bur. Standards, 13, 1 (1934},
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TABLE V

REPRESENTATION OF DATA BY EQUATIONS

Dars Swowine THe Bomive Poivrs oF PR WATER FOR VaARIoUus PRESSTRES 1N
TEE NEIGHBORHOOD OF NORMAL ATMOSPHERIC PRESSURE GIVEN RY OSROTNE AND
MEvER,! For UsE 15 ILLUSTRATING THE METHOD OF AVERAGES FOR Drerirvrsixg

Equarions
Group No. | pinmm-Heg : 7T in °C Group p in mm-Hg | Average 7 in °C
N
800 101.443 A )\
1 780 100,729 780 1006724,
760 100.000 O
740 99.255 a3
2 720 08,4932 720 LAY 0s.486
700 97.712 v
630 96.014 N
3 60 96.005 660 96.088
640  wwwodbrgalibrary\0Egin
In determinant form, the equa.t@dg’él.fsing z and y becomes
L=
AN
2238 1 1 |=0 [68]
A T—2398 —1 1
which simplifies ¢4,
O ¥ = 2318z — (.080z2 69
and to NV [69]
Nos o
T = o886 ¢ — 0.03863 -7
."\~~;, mm—Hg (p f20 mm“I‘Ig)
\'“\ N/

— 0.0000222

On transferring to

T = 99.995° C — 0.03686 ¢
mm-Hg

—~ 0.0000222

1 Idem,

standard conditions this

mm-Hg?

becomes

(760 mm~Hg — p)

-G

ml:rr—Hg2

(760 mm-Hg — p)?

{p — 720 mm-Hg)? [70]

[71]
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Though the fit of this equation is not bad, it is quite inferior to that of
the following equation determined by the sclected points method.

T = 100.000° C — 0.03682

f -He —
mm-Hg (760 mm~Hg — p)

o

(mm-Hg)

(e} Method of Moments. This method is sometimes used when the
equation sought s of the form

y =fle) =a+ bz +e®+- -+ pt [7\3]'"

The procedure requires that the z-coordinates of the points to \\rh}(t\fl ‘the
equation is (o be fitted differ by a constant, Az. If the original data do
not satisty thix condition, it is necessary to plot the origingl{data, fit a
smooth curve, and choose from the curve a serics of pgj(ta’wit-h equi-
distant abscissas. For such a set of points we define]dh, succession, the
7ero moment, , the first moment, ', the second rigment, u”, ete., of
¥ with respect to x as O

p = Zydr = AzZy S8

u = ZrxyAr = Aa:E:c,?ir.’" [74]
p'! = ZatyAx =.;Zk;§2'x2y, ete.

— 0.000021¢ 5 (760 mm-Hg — p)*  [72]

W W sdxbr}:fu library.org.in

It is then assumed that these mements are related to the desired curve

as follows: &
w=" f@)de = AcZy
SO s
O = f ¢ f@)dz = Ay [75]
' “
m: p = f 22 flaydze = ArZaty, cte.,
.“§” o

wh g\‘a":represents the lowest z-value less 194, and 8 the highest
z-valle plus L4Aw. Tf the desired equation is lincar in 2, only the first
two equations of Egg. 75 are used; if of the seeond degree, thl{-: first tk?ree
are used; ote. Substituting for f(z) its equal, £q. 73, and integrating,
%e obtain for the linear case

2 _ o
a(ﬁ-—a)—l—?(—ﬁ-—é—'_)"—mzy

[76]
a(f® — o) 2(5_33:.33_) — AzZay
2
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The valucs of @ and b may then be obtained by gelving Egs. 76 simul-
taneously.

Equations obtained by this method deviate from those obtained by
more reliskle methods, the more go the fewer the number of points.
Tts usc is not recommended, since it is faulty in theory and usually
entails more compulational labor than far more reliable methods.

8. Successive Approximations. Ifor cases where the desired equation
is, or can be made, lincar with respeet to its arbitrary constants, the
results obtained using one of the methods above may generally be im-
proved by taking successive approximations. Let the equation, trans-
formed if necessary to a form linear with respect to the arbitraz’y ¢on-

stants or functions of them, be written ¢\
"N

y=ﬂ;+b$_}_m2+... « N [}!?]

and let the values for the arbitrary constants and the cofrr;puted y-values
caleulated as first approximations, using one of\thes above described
methods, be represented by primes, ', ¥, 3, etd

Ordinarily, in accord with a suggestion madewbove, it will be advan-
tageous to use rounded values for o, ¥, etcl, But not for the ¥ /s com-
puted with their aid. So doing greatly reduces computational labor.

The procedurc for obtaining & second approximation follows : {1} Com-
pute for the various given z-valueg $he corresponding values of y — #.
(2) Plot (y ~ #/.) as a"fine -1815‘.35 ]%I.gﬁﬁ“?f;ﬁ,g]}f{' possible, a smooth curve
to the plotted points. Notehat in this plot the distances of the points
from the z-axis represent, dewaations of the first approximation aquation
from the ohserved data ‘and that the distances from the plotted points
to the curve reprcsr-;%eviations of the obscrved data from the second
approximation eguation which is to be derived, (3) If ‘a curve ecan be
fitted, obtain Mg equation, cither by the method used to obtain
y = f (x),.or‘bj'f any other suituble method, (4) Add this correction
equationiba/the first approximation equation o obtain the sceond ap-
proximaﬁnn equation.

:Ifia;thil'd approximation is necded, stops 1 to 4 may be repeated. 1
‘Mevessary, still further approximations may be made until the best pos-
sible fit is obtained. This condition is attained when the eurve obtained
by step 2 coincides with the z-axis,
th s appromatio a3 method mey be s to et
that obtained by lcast;squafgl’;; 0’? o Obt&me.d,. it s identical WitE
be further impt:oved. This proezg m:a Lft (?f th.e original daft&!’ and cannot
approximation by some simpler n HE;‘; ]c-im Dl‘v’mg. the obfaining ‘?f .
erally lightens the computatio;lallf o o outtined %Lbove, which &0

abor connected with the method of
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least squares, and increases greatly the ease of detection of computa-
tional errors, 1% further explained in Chapter XI,

At the close of the disenssion of the seleeted-points method, it was
indieated that the equation there derived fo represent the data of Table
IV, namely

y = 1.3770-55527 + 5.7822% [64]

or in lincar form for the undetermined constants,
log y = 0.1388 + 0.2411z + 2.5111x? [63]

eould be betiered to overcome certain deficiencies in fit. ' With this pur-
poz¢ in mind, Iet us attempt improvement by successive approximatim)s,\
using the selected-points method. 2
That Egs. 64 and 63 fuil to a certain extent is indicated in thivlast
eolumm of Table IV, To corvect for the deviatlons shown, yﬁz’é&ck an
equation of the same form as Ig. 63 to represent (log ¥ :'\mg i) s a
funetion of 2. One first plots, as in Fig. 114, (ogyJogy's) = f(w).
Then, selecting (0.3, —~0.0052), (0.6,—0.0004), a.qd\@.g, —0.0040) as
probable points for the (irst approximation corr@ﬁbn, one obtainsg for
that correction )
A{log ') = —0.0184 + 0.03808"— 0.04672% [78]
Plotting next, as taken from the gra.pl};;gﬁgﬂl}jiﬁrﬁ%%@g%gjnlﬂg y'e)
~ Allog y/'.) = flx) gives the distribibion shown in Fig. 115, Ase@nd
approximation corvection scepi®\ desirable.  Sclecting the points
(0.3,0.0006), (0.6,—0.0010), areN0.9,0.0006), the following second cor-
rection equation is obilained N
A" (log gl 0.0054 — 00213z + 0.01782" 79]
AS —
Plotting the new di.ﬁ"ef‘ences in Fig. 11C, one sees the possﬂ_)lht-y for a
third appm};inﬁi?iﬁh correction. For such correction, there 1s shown
N A (logy'y) = 0.0015 — 0.0025z [80]

»
&
ad

Wll(:t}yg\r:c’n‘s'h‘r_:t- this correction should be represented by a straight line,
and if\gn} by the one indicated, is 2 matfer of opinion, At any rafe, that
given can hardly be bettered with certainty without Tecourse to the
least-squares method. i

Adding the three correction eguations to Eq. 63 one biains the
fourth approximation

log /", = 0.1273 + 0.2753¢ + 2.4822° (31]
and finally, writing y in place of 4"

y = 13106 (088252 + BT [82]

Q
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prove, by successive approximations, the fit. of Eqs. 60

¢ dala of Table TV. 4, B, and C are graphs leading 10
rrection equations respectively,

Fia. 11, Graphs used to im
and 64 in representing +h
first, secondl, and third eo
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The next question concerns the extent to which the computed con-
stants are significant. Their probable errors (see Chapter VIII) can-
not be determined, though, as will be shown in Chapter XI, probable
oprors ean be determined for constants obtained by the least-sguares
method, Here we must be confent with estimates. Inspection of Fig.
11¢' indicates that, at the most, reliance on computed values for log g
to represent, the measurements given in Table IV cannot exeeed 0.0005.
With log ¥ varyving from 0.12 for = 0 to 2.7 for z = 1.0, this means
for dy/y, the differcntial of log y, a varialion from about 1/240 to about
1/5000. It is therefore desirable to include in the way of significant
digits in the computed constanis of Iig. 81 only as many as will coms
tribute 1/5000th of the whele or more. For z = 1, wherc the valup, of
log y is roughly 2.9, this means a A(log y) of 0.0006. To the extenit of
six in the ten thousandth place, it is to be scen that nontl'ibflt.ialw are
made by the last digits given in each of the eomputed a@n%tants, and
that none could be made by additional digits had thiegubeen included.
It follows that the computed constants for Eq. 81 are significant only
to the extent shown. As to whether or not thegoefficients of « and z?
in Eq. 82 should be rounded off to 0.632 and 5717, the answer is difficult,
since these are horderline cases. N

The rather irregular nature of the disfibutipn. afplotted. opints as
shown in Fig. 11 was largely responsible for the need of the tnusually
large number of approxhnati(ms,madé before the final equation was ob-
tained in the ease illustrated ghove. Often, particularly if the data arc
highly consistent, only one approximation correction is necded. Con-
sider in this connection data by Regnault as reported by Fowle.! (Table
¥L) The equation be fitted is based on the extremecly mportant
thermodynamie iltzlaiitin known as the Clapeyron equation

\O N )
RO € RS 53]

of whiel'L is a heat of transformation, .g., vapor zation, from phase 1 to
phase 2, and T, p, and v are, in order, temperature, pressure, and specifie
volume, The data sclected concern the saturated vapor pressure of
CCl. (Sce Table VI and Fig, 12.) From the plot of log p = f(1/T),
the first approximation equation, that of a straight line in accord with

: . . : = 1) - .
thermodynamie reasoning, is readily obtained. With rounded values

'Fowle, ¥. E., Smithsonian Physical Tables, 7th Revised Edition, p. 173 The
Bmithsonian Tnstitution, Washington, 1. C, 1920.
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TABLE VI

TeE SaTumaTeEd Varor PrEsSURE oF CansoN TernacuuoriDe CCly ror Vaniovs

TEMPERATURES AS DETERMINED BY RegNauLT anp RerorTep By FOwLE,' axp

CERTAIN COMPUTATIONS 70 JLLUSTRATE THE SUCCESSIVE APFROXIMATION MuTHoD
or Fivving a¥y Fauarion 10 REPRESENT Grven Data

Tin win P Tin 3 1. 1 |[1600°K P
v log —————| . B} B log
mm-Hg 1 mm-TTg K T K° T 1 mm-Hg

ot

10% log ?}—!
12

r—. o
N

65.0 376.3 2.57553 | 328.16 j 0.0030473 | 4.87568 |  2.57432 Ko
600 | 4474 265070 | 333.16 | 0030016 | 4.80256  2.64744 N\ 296
65.0 ' b28.7 272321 | 338.16| 0020872 |4.73152| 2.7I8B48\ 473

e

70.0 | 621.1 270316 | 343.16| .0029141 | 1.66256 ,2;7‘8744 572
750 | 725.7 2.86076 | 348.16| .0028722) 450552 [ 285448 628
80.0 | 843.3 292508 | 453.16| 0028316 | 4.53086.\/2.91944 ' 654
850 | 975.1 208005 | 358.16| .0027920 ,4;.'41%20 298280 | 625
900 |1122.3 3.05010 | 368.16 | 0027536440576 | 3.04424 536
95.0 | 1286.9 3.10055 | 368.16; 0027062434502 | 3.10408 547

a3

for the constants, and honee Hveafisbbakionel i close fit, we nsc as such
the straight line "

ny

'3

P 1 1\ _
1 — t— 7 — ° - — g
0g 7 o——" <Z\9r 1600 °K (T 0.00280 K°> [84]

Values for this fungtipn are given in the next to the lust column of the
table. I1n the 'las{ﬁ eolumn, headed 10° log (p/9"), is shown the extent
to which Eq84/fails to represent the data. These values are plotted
in Fig. 12¢Phe points shown as o are seen on the magnified scale,
which maghow be used, to lie on a smooth curve which sccms slightly
off Ifl\}gl.jf.;fOI' & second-degree parabola. Selection of a power series of the
\fhgrd degree in (E‘ — 0.0028 El‘;) and using positions where the curve,
if drawn, would intersect the ordinates st 0.0027, 0.0028, 0.0029, and
0.0030 lead to the correction equation ’ , '

rr

P . 1
log — =635 X 10™° +- 475 K° (-'- - 1 02
P + 700028 ) - 75 X 10° K

1 132 &
Z_ - - . 1 1 -
(T 0.0028 K°) - 125 X 108 K°3 (E’ — 0.002% _5> [83]

1 Tdem.
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That this correction equation has succeeded well iz shown by the eurve
that has been drawn according to the equation,

o -
a1 - Tl\ | 006
----- ; ey !
&:g sy =7 (/)
3.0 005
\\ .
el . g
<
o i
) Log (p/1 mm-Hg) =7 (1/T}=
Zo8 . ' -
2.7 -
26
ms
¢ 2\J
027 Q028N Y 029 L0030
O\ Y inki®

Fi. 12. A graph Hhm\-:irlig: fhe saturated vapor pressure of CCl a8 & fgnct-m]rnr l(;f
{emperature. The St:(w'rghr‘_ line represents # rounded first approygmai..wm e
puints plotted rs;?hfdll civeles represent the failure of that appro:nlclmatlcn. Hr;w
well the se wnd%fiﬁ”oxiﬂh‘t“ﬂﬂ accounts for the failure of the first is shown by the

fit of the l.hi]}(‘i- coree curve of Eq. 85 which has heen drawn.

o ;
¥ (1@}&6{1 85 added to Tig. 84 yields the relation desired, namely

H

1 1
b — = ol = — 0.0028 —;

- -~ — 2.97635 — 159525 K ( 0)
T o Tig 2.9763 9 T K

oo L)
— 75 % I0*K® (E’ — 0.0028 e

3 .
(1 L 8
195 % 106 K ("E’ — 0.0028 K°) [86]
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Differcntiation of Eq. 86 and substitution in Eq. 83, once (»y — v} is
known, leads to a desired heat of vaporization.

7. Summary. Data which yield a smooth curve on plotting may often
be profitably represented by an equation. For the empirical case, the
problem of fitting an equation to a set of data involves two steps: (1)
finding & suitable form of equation to represent the dats, and {2) ohtain-
ing suitable values for the arbitrary constants. Tor the rational casoe,
the form of the equation is known from theoretical considerations, so
that only step (2} is involved. )

For the empirical equation, there is no straightforward way of p(}—
forming step (1); one ean only guess at a suitable form from theshape
of the curve representing the data. There are, though, mefhods of
testing whether a particular guess is a good one. For mgat .&uations
with only one or two arbitrary constants, a graphical tfestfn"ié_v be used;
for equations with three or more arbitrary constants, & tabular method
(Table TI) is often applicable. N4

There are several methods for finding valueg\for the arbitrary con-
stants. The method of least squares (Chapter XT) is the mosl reliable,
but generally the most laborious. Of t-hc’éubstitute mothods, (1) the
straight-Tine graph method may be usedMor most two-constant forms
of equations as well as several throesafd four-constant forms. Tt will
generally give more accltifté tENEHIRFIRY 1581 bor than any other sub-
stitute method for the two-constant forms for which it is applicable.
(2) The muthod Of S(&lectcd pbi_[lt.S may be used f()r almost. a“ forms Of
equations but is most suitable for linear forms or forms which can be
made linear with rogpeetito their arbitrary constants. This methed is
generally the most _gegurate for equations with three or more arbitrary
constants, and Iséspecially recommended when successive approxima-
tions are to heymade. (3) The method of averages, a special selected-
points method, may be used only for oquations which can be written in
2 form liffesir with respect to the arbitrary constants. For the straight
line cai@ it is highly precise. Tt does not require the construction of 2
.g'mf) b . (1) The method of moments is applicable only to equations
CXpressing i as a polynomial in z, and is considerably less reliable than
any of the other methods discussed in this chapter,

When fitting equations which are linear with respect to their arbitrary
coustants, the results obtained by applying one of the above methods

rémy generally be i.nTproved by employing successive approximations.
eneral!y zil.lso, the time involved may be shortened by following from
the beginning the procedure of

ded v k using for the first approximation only
rounde }«a.lues for the:- arbitrary constants. This method also provides
a convenient way of simplifying the least-squares procedure.



PROBLEMS 83

PROBLEMS

i, The a-ruy activity of a sample of radon, expressed in terms of its initial activity
st the heginning of a test to determine its decay constant and half life, is found to
have the following froctional values at the ends of succeeding 24-hour infervals:
0.835, 0.605, 0.580, 0.485, 0.405, 0.335, 0.280, and 0.235. On the assumption that
the uctivity obeys an exponential deeay law, find the equation that represents the
setivily, and determine the deeay eonstant and half life.

2. Find a tabular suitability test for the cquation

bz

as

T

3. Using the fnllowing data for the resistivity of tungsten as s function of teps

perature,’ find the equation for p = f(T). \' N
T » T p ) 5.”' \.
K # ohm cm *K 4 obm ema |
1000 25.70 2500 77,28 &
1560 41.85 3000 9652
2000 59.10 3500 N57

The properiies of many elements at elevaled tempcral.u{f&}&ppmﬁm&tc (¥/yo} =
{I'/Te)®, hence fry a ln-In or a log-log relation. )

4. The emf of a standard Pt to (309, Pt—10% Rh)z shermoeouple 2 as a function
of temperature when the cold junction is at 0.0°’G.}§, glven as

T E a3 ~}f\-}ww.dbraulil:grary,org,jn
0°C 0.00my % 1000°C 9,569 mv

200 1.436 A 1200 11.924

400 3,250\ 1400 14.312

500 5

?g% Ne 1600 16.674
3

E00 i

Apply the suceessive-difibrandes test and determine how many terms in a power series
in {T — 0°C} are needgdto give a rather precise description of E = FT —0°C)
Derive an cquution o the form
B (T —0°C) + (1 — 00O FelT —0° QP

to rePrescgt{hé'data given. Form a table showing, for the temperalures given, the
diffe Eé“&;between the given emf’s and your computed emf’s, )

5. USiug the data of Troblem 2, Chapter I, in which unsmoothed data were given
for incundescent tungsten vacuum lamps relating percentage of normal voltage of
peration to the temperature of the fillament, compute a best curve of the type

ia o )a(l + B log T/ T
Ve T

! Forsythe, W. 7., and Worthing, A. G., Astrophys. J., 81, 158 (1923]. .
* Roeser, W, T, “Thermoelectric Thermometry,” p. 104 of repori of symposinm on Temperature: —

s Measurement and Control in Science and Irdustry, New York, Reiphold Publishing Corporation,

1941,
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Use the method of successive approximalions. Compare the results with those
obdained by tabular smocthing.

6. As the result of a porous-plug test for air, Roebuck reports that air, started
with the first pressure-temperature condition shown, will assume the succeeding
conditions shown on passage throngh a succession of porous plugs properly con-
wrolled.

P I P T
215.8 A 0.00°C 1281 A —10.80° C

180.9 —3.35 169.7 —11.02

168.4 —4.63 - 01.2 —17.69

154 .4 —6.51 73.5 —21.56 ~
140.7 —8.67 \

s

Find the best power serics, using successive approxinalions, for rr*pw:v;rgt g these
data. "o\

7. Graph carefully the data in the first und third columng of J\ﬂb]& 13, o 257,
and, with the aid of Fgs. 52 to 55, deiermine the constants for A equation of fthe
form ¥ = a &in (wt + ¢} lo represent the dala.  Compare yr_nuu,i}g:s?lilt. with the least-
aquares reault at the botiom of the table. \%

8. With the result obtained in the previous probl('n\im a first approximation,
obtain a second approximation.

8. Derive the eritertun of tabular suitability for J:}p 10 of Table IT.

i0. The reflectance ¥ of o ecrtain poreelain e}}ame as & funetion of opucifier con-
tent x, arbilrarily defined, as given by H. . Arrffﬂd is

X yinfy  Www. dpraujq_p;ﬁa% org.in »in %

0.0 63.00 3000 68.30 8.0  70.60
0.5  64.30 8.5 68.80 6.5 70.80
1.0 65.35 ‘\” 4.0 69.30 7.0 70.60
1.5 66.15 , 28 4.5 69.65 7.5 T1.00
2.0 67.00 O 5.0 70.05 8.0  71.05
2.5 67,70 5.5  70.30

\ X
Obtain an equalidn With not more than three parameters to represent the data.

11. Obtain j{’n\equatmn of the form Py = f{t} for the following tabulated values
graphed m\QE A, v, 175.

R :, t Pt t PS t Pg
w\\' 00 gee L Bee goc ! see sec L
\ ) 0.25 0.708 2.75 0,070 5.25 0,008
0.75 .450 3.25 .055 5.75 .013
1.25 284 3.75 .35 6.25 L00&
1.75 192 4.25 .024
2.25 .138 4.75 018



CHAPTER IV

TABULAR AND GRAPHICAL DIFFERENTIATION
AND INTEGRATION

1. Introduction. The solutions of many problems include finding the s
slope of a curve or the area of a closed figurc. Of such great importanee
have these processes been historieally that their solutions lead dincetly
to the invention of the caleulus. Mathematieally the dcrivatixﬁe,;dy/ tlx,

Ta

of a function, y = f(z), and the definite integral, f y dz, g:fe involved.
£ a\

The function f(x) is often known explicitly. Here, hawever, we are con-

cerned principally with those that are not known )

The derivative problem has already becn“e'{lé-ountered in Chapter
111, wherc the slope of a straight line was reqpil‘ed for the evaluation of
one of the constants of an empirical equation, More often the slopo
itsclf is desired because of what it itselReprGsdRE I brary-org.n

Often, slopes that are desired are'thosc of nonlinear curves as (1) in
the feld of chemieal thermodynarrfi’cﬂs: where values of dE/d7T are sought
in order that we may obt-ain,f&{a.ts of reactions which proceed in voltaic
cells, in accord with the Q@)bé-ﬂelmhﬁltz equation,

O .
N2 = -—Q(E—T% [1]
O
of which L\L"\t%.\'[iie change of internal energy, Q the quantity of elec-
trieity tl‘&ngs%‘md, I the emf of the cell, and 7' the absolute temperature;
(2) in ghipMield of clectrical engineering, when the power loss, P, of &

N

m'ﬁﬁ,ﬁf generator is obtained by the retardation method, and values
of di/dt are needed for use with the equation
dw
=Tu—; [2]
P @

of which 7 is the moment of inertia of the Totor, @ its angular velocity,

and duw/dt its angular acccleration; and (3) in the fleld of_ heat measure-

ments, when the conductivity, &, of a metal in rod form is measured by
35
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the Biot, Wiedemann, and Franz method. Here the cquation used is

Q
dt

o

of which d@/dt is the rate of transfoer of heat, dT'/dl temperature gradient,
and 4 cross-sectional area,

Problems involving integrations are equally important and n UTICTOUS.
Typieal examples occur (1) in the fiekl of mechanical enginecving, hen
the mean eficetive pressure in the evlinder of a steam engine s+ Mined
from the arca of an “indicator diagram” showing the profyive as o
function of the position of the piston; (2) in the field of ghemical ther-
modynamics, when the absolute entropy, S, of a pure, sii})sté.me at the
absolute temperature, T, is caleulated, using the deﬁfﬁ\ﬁg equation

TC -
S= [ LadT N 1
JE DY 5

of which ¢, represents a specific heat and £ @¥heat of translormear on; and
(3) in the field of electrical measureménts, when the hysteresiz energy
loss per unit volume, I-V,me%iiﬂ‘agﬁ@ei@'&%gﬁﬂ] is obtained from the
atea of its “hysteresis loop,” usidg "

oL 1
= f 11dB 5]
N\ g

of which IT represenfsymagnetic field strength and B magnetic incduetion.

There are nunéils methods of solving both the slope and the area
problem. W'h(h ‘method is best depends on the nature of the problem
and the forpniu which the data are presented. If the data are availsble
In equatiodform as y = f{z), the derived cquation, (dy/dx) = f'(x), or

the infegrated cquation,

,Ig:

ydz = F(z), can generally be obtained by

\Igaihematical differentialion or integration, DPavticular values of dy/de

for any value of z, or of f y da for any set of limits, can then usually
be obtained with euse and wi th precision. When the dula wre presented

m ;ﬁblﬂa}" or graphical form there are two possibilities. It mayv be best,
and particularly s this so when a general expression [or dy/de or

Y dz is desired, to find y = f(z) empirically by the methods eovered

m Chapter 111, and then to differentiate or to integrate muthematically.
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However, if only a few parficular values of dy/de or of [ ydu arc

wanted, ov if the equation y = f(z) is too complicated, onc of the
gra-phical or tahular methods to be deseribed may be preferable.

9, Graphical Methods of Finding dy/dx. (a) Tangent and Normal
Wethods. The procedure for the araphical determination of the #lope
of a eurve at & particular point, that corresponding to = say, eonsists
of three steps: (1) plotting with considerable care the curve y = f(x},
(2) loeating the line tangent (or normal) to the curve at 2, and (3) cal-
culating the slope of the eurve. For the tungent

dy _ Y2 Q)
dr 12— &y R
£\

where (v1,1) and {(xs,y2) are two conveniently chosen pgih’ﬁs;". on the
tangent (o normal) line. R [,

Seemiugly slight variations in the curve representibgly = f{x) may
result in large variations in dy/dz. For this reason, i i important that,
in step 1, one ~hould follow with care the tules o . fond practice stated in
Chapter 11. It is cspecially d wsirable to hay§ the tangent line at = in-
clined at about 45° to the z-axis. Also fqrz greatest accuracy and con-
venience, the points chosen for step 3v5h&rﬂ(1"hﬂaﬁ§uiwlﬁp9mf¥’jﬂ% prac-
ticable and hould be intersections ofithe fangent {or normal) with main
coordinate lincs. ) )

There are xeveral methods p’”\’performi.ng stop 2. The simplest method
of loeating the tangent linest ke it that of slowly rotating a straight edge
on the convex side of the catve about the point until it secms to he tan-
gent to the curve, | Mueh depends on good illumination. With prac-
tice, rather aceuratts foesults may be obtained by this method.  Per-
formanee is imp(é}éd by the usc of & transparent rule with a long nar-
Tow serateh Q\'cﬁt on its under side.

Some wdvkers prefer to defermine the dy/ds of a given curve by the
iﬁdil:i&f?-t-"iffe;(-]'lt)(l, which involves first determining the normal. This
method requires distinguishing between the geometric slope of & curve
at a particular point and its physical slope. The former for the comron
plot of = f{z) at a particular point is the tangent of the angle w?uch
the tangent to the curve at that point makes with the z-axis. For agiven
funetion and a particular x, the value of the geometric slope varies with
the seale choice, Its unit is the numeric one. The physical slope for a
barticular &, however, does not, change with the scale choice. [ts value
I8 dy/dr. Tts unit is that of ¥ divided by that of z a8, for example,
om/see, K°/cm, ete.
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With subscripts ge and gn referring to the geometric slopes of a curve
and its normal, we may write

dy ___ 1 _
(dx)gc B d_y) 7]

correspondingly with subscripts pe and pn referring to the phy=ical slopes
of the curve and its normal, we may write

( @)2 A

dyy 6T A

(d;::)pc - @) ) \' \..}7(1]
dx o \ N\

ere (8y/5x), a seale factor for the graph, is the ratio of a, [i}fysié:xl 8z cor-

responding to a length measured along the y-axis to the)aTl}-’.‘-;iml ar cor-

responding to the same length measured along the z2a3¥, As ix apparent,
B L

. /C

&
/ _\/ /AN / /

B A www,db/ 'Ll‘iii'y.org.il:ﬂ /

) P £ I / L ) L /

L @ . g N @ 2 4 @ /

Fic. 1. The Simons tangeatmeter. Parts A, 4 sre lucite blocks. B is u first sur-
fa,cr.s metal mirror, €46 are hrags binding strips, B, D are machine serews, Fis
an index line pel"se?ﬂicular to mirror B seribed on the bottom of the Ineite bloeks.
the introdl’g@ri’uf the scale factor makes it possible for the equation to
check dir,p.e ionally, I’roof of Eq. 7a is left for a problem at the cnd of
the chapter.
ﬁij@n Eq. 7a, the procedure for determining a physical slope follows.
Oli.ke ‘ﬁrst. finds the position of the normal, A satisfactory method for
dqmg this consists of placing a long narrow piece of plane, first-surface
INIITOr ACTOSS the curve, rotating it until the curve and its reflection in
the mirror form a smooth curve ag shown by the “squins test” (Chapter
1I). The plane of the mirror is then normal to the curve. Though a

Si?rt' TOIETOT may be used, a long one is prefetred in order that the cal-
culation of its slope may be as accurate as possible. Next, one deter-

rpines the scale f actor in accord with the definition given above and then
finally the physical slope, using Eq, 7a, :




GRAPHICAL METTODS OF FINDING dy/ds &9

A convenient apparatus, which employs the normal principle yet per-
mits of the direct determination of the physical tangent from the graph,
i the tangenimeter (Fig. 1) described by Simons.! The polished, plane,
first-surface, metal mirror mounted between the lucite blocks is first set
normal to the curve. The seratch perpendicular to the mirror s then
parallel to the desired tangent and permits determining dy/dx at once.

In Chapter [TI it was noted that, if a graph of y = f(z) is to be used
for determining the derivative dy/dx, one should select seales for plot-
ting which give an approximate geometric slope of unity. We can now

[

Faulibrary org.in

Fig. 2. A graph showing that greater precision for determining a-dy,»’d:s is P ossible
when the goometric Slgpie is approximately unity than when it deviates considerably
from this value, 75"

S

show why, t’%“is the cage. Consider the determination of the 'dy/ dz's
at p fmg: g, corresponding points on the two curves of Fig. 2 with geo-
metrigwdlopes of approximately 1 and V4, using the normal, I‘_‘l’le’[.h(?d.
Ol}vti(fusly their relative aceuracies will depend on the ?..ccl1ra.cles with
which the geometric slopes of the normals may be obtained, and these
in turn on the accuracies with which the tengths ac, be, df, and e¢f may
be determined. Civen that b and de are of equal lengths and that the
uncertainly in the other linear meagdrements s a certain small amo{un‘,o,
By 0.2 mm, it is obvious that the relative accuracies of the two dy/dz’s
will depend most of all on the relative accuracies of the measurements

'Simons, H. ., Tnd, Eng. Chem. (Anal. Bd.), 13, 563 (1941). See also Latishaw,
3. 1., Am. Chem. Soc., 47, 793 (1925). Richards and Taspe, Science, T1, 200 (1930].
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of ac and df and that the accuracy for the determination of oy dr at p
1s greator than at ¢, Just how much greater will depend on principleg
to be discussed later in Chapter I1X.

(b) Secant Method. For a possibly greater accuracy than that vielded
by the tangent or the normal methods, the secant method may he used.
In this instance the slope of the tangent line is obtained as the limiting
position of the secant line drawn through (z,4) and nearby points P,
Po, ete., as P approaches . For this purpose, four ot five or more posi-
tions of P are chosen. Tt is convenient to let the values Apr, An, Ap,
etc., representing changes in ¢ in passing from (r,7) to points 17, \B,
cte., be multiples of a chosen Ax. Let the corresponding (:h:-].ng?}\in i
be Ay, Azy, ete. The quolicnts Ay/Az, Asy/ Agr, etc, rnQﬁﬁseht‘-ing
slopes of secants passing through the point (z,y), are thepsplotted as a
function of  or of Az, and a curve giving Ay/Ar = Fi80) is drawn.
The value of Ay/Az for Az = 0 is, of course, the dyfer desired.  With
values for 2 and y taken [rom a suitable table, the ohily graphing that
may need to be performed is that showing Aypde’= f(x). The points
Py, Py, ete., necd not all be on the same sidé\oF the point (r,y).

Ilustrating the secant method, considethe data of Table T showing
the pyrometer current, I, of a certaty Hiéappmring filament optical

www_dbrau[ibréry.org.in
TABRE 1
Tus Pyroverer Currext, 7, o A C}.ﬁmm Drzarpranmic FILAMENT PyROMETER
For DisaPPRARANCE AGAWSTWJQBACKGROL'ND Ar Vamous SrecTral Bricur-
wEssEs, By (A = 0.6654), Bxphsgeno v Toams or 1By FOr & BLagk Bopy AT 1TH
iotn Poinr, 1336° K

N\

X
By AN By, 2l
By I&L:n\ma log uB_}\ log I, log Iy — log £, A log B,
C§ " :, (T}
MQ:‘IZ{) ,| 1988 —0.8031  2.2873 —0.1141 0. 1263
\03{50 210.8 —0.6021 2.3238 — 0776 1288
500 230.1 —0.3010 | 2.3610 — 0395 1312
1.000 252.0 0.0000 | 2 4014 L0000
2.000 277.1 0.3010 | 2. 4495 L0412 1569
4,000 305.8 0.6021 | 2. 4854 084D 1395
8.000 338.5 0.9051 2. 5206 1282 1420
16.000 376.0 LoMl | 2 5752 1738 - 1444
32.000 419.5 - 1.5052 | 2 g207 2213 0 L1470
64.000  47.2 1.8062 | 2.6723 209 L1500
- |
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pyrometer s 2 funetion of the spectral brightness, By, of a source of
light. Ter s find (By/Ip) (dIp/dB,) for the pyrometer lamp when
matching a black body background at the gold point. The quantity
sought is e slope of the curve log I, = fllog (By/oBx)] at log (Bi/oPh)
= 0.

Computed values for Alog f,/8 log (By/oBy) are included in Table 1.
These values are graphed in Fig. 3. For log (B+/oBy) = 0.000 the slope

r 7

0,140 — 7
N
i AW,
A\

L\‘
N
|

/[Alogg:’}\ABh)]

Ta Lo I

0132 |- —Zl T
X 3

A\ Wwrw dbraulibrary jorg.ih
gaesl— L= -

0.4 0.8

—0.8 —04 0.0
\ Log (B;\AB,\)
: i i \?\ ' " 4 method for the
Tia 3. Iflustrating, with the aid of the data of Table I, the sccan , o
precise derermination phwilope. The slope sought is that of (Br/Tp)(dl,/dBx)
for log (By 2% = OUDO

)

is seen Lo b{_\\('“i}_ﬁ]. ‘enerally the inverse of (Bx/7p) (AT ,/dBy) is de-
sired. ‘Thif\itverse value is 7.43, and states that for & black E?dy "
ihe gold<paint the spectral brightness at A = 0.665, varies 7.45% for 3i
1.0€%%ariation in the matching pyr ometer current. 'The wrork mqlf]r.]i(\
it codiderable in comparison with that required by the tangent or the
normal methocd.

There arve Omuchanical devices for evaluating dy/de from a plot of_
¥ = {(z) " and other deviees which automatically draw out the cuive 0§
dy/dr = f'(x) when their tracer arms are made to follow the ¥ = f (il_-_
curve in a particular manner? Queh insfruments are rather comph

IMyang, 1. L. (L., Engineering, 144, Bept. 3, 19:(;7'

* Lipka, J., Graphical and M cchanical Compuialion,
& Bons, 1918,

p. 285, New York, John Wiley
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cated to use, however. They yield no increase in aceuracy, but are very
valuable as time savers in certain specialized routine problems.

3. Tabular Methods of Finding dy/dx. When the tabulations are
precise, thesc methods equal, or are superior to, graphical mnethods in
accuracy, and permit the caleulation of derivatives of the sccond and
higher orders dircetly from the original data. The necessary equations
are obtained by differentiating the interpolation formulas of Chapter 1,
Thus, the Gregory-Newton formula (Eg. 7 of Chapter 1) expresses
¥ =J(z) in terms of the successive differcnces of y obtained frommg
table of ¥ = f(x) as

( n .\:\'
nin — \
Y APy f--- ) QO [8]

¥ = yo -+ ndy, +

Here (xo,) is a tabulated point near (x,7), Az i3 thai&éﬁistant tabular
z-interval, and n is defined by v
n=2_%0 il [9
T Az O '

NN

N/

The terms Ayy, Ay, etc-ﬁ{'&}_hﬁ;@{ﬂ}ﬁ%ﬁﬁ?mﬁgﬁtﬂ., order of differences
of the tabulated 3’5 (see Chapter B3 There follows

-0 w
N\ \\
dy

1 A%
— = NN U — —
dx :j\An-:\[ Yot (2n 1)(21)
7'\W
\ Y4 ]
\\ + 3n® — 6n + 9 (3 @)
™« 3!

¢

Hence,

g \

\ ™ 3 2 A4y0
QO + (n® — 1802 4 29y, — gy ) 14
4:-
With Az negativg a,n.d & < %, oune uses an upward slanting set of A's
(see Table T1) of which the signs of the Ay, A%y, APy ete., differences

will be changed, but the signs of the A%y, A%y, ete., differences will be
unchanged. S '

An example ilustrating the method follows,

Erample. From the values for y = . .
g T = ’ wble T1,
find dy/dx for z = 1,798 ¥ = f(z) = log «, given in Table TI,
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TABLIL: IT

SHOWING S1VERAL VALUES FOR ¥ = f(z) = Loa z For 4 Limmep RaNok oF z aNp
Tk Succwrssive DivrERENCES Ay, A%y, Ero.

' |
z i _ Ay Ay 1 aly Aly ASy
1.0 0.00000
0. 17609
1.5 .17600 —0.05115
- T 1244 ¢ 0.02312
2.0 30103 | — 02803 —0.01282
i .00691 .01030 (.008Q2\, -
2.5 | .BOTH — 01773 T | - 00480 A
07918 .00550 .. 00257
3.0 | .4TTI2 — 01223 — 00225 N
06695 | .00327 LN D018
3.5 | .h407 — 00806 - — .00135"
05799 00212 \/
4.0 60206 — 00684 D
.05115 7,3
4.5' 65321 ) N\
3.0 Nt \-!ww dbL‘aulibrary, rg.in

A8 79 we select 1,500 and as Ax,f'(js:)f}[}. There follows from Eq. 9

o — zq {0126~ 1500
" O o500

Aa-\’\ o’

Bubstituting inlo Eq. 11, yields

dy O —0.02803
- mﬁ:——: 712494 + (2 X 0452 — 1) g

d-']}

O\ 01030
Br (3 X 0.452% — 6 ><0452+2) 5 T

w\"‘,

N = 2.000(0.12494 + 0.00135 — 0.00017 — 0.00014 - ) [13]

The final result depends on the number of terms included:

= (1452 [12]

d .
Kumher of Terms f Clorrection
H
1 1. 24988 +4-0.00174
2 25258 — 00095
3 .25224 — 00082
4 .25196 — 00034
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4. Tabular Methods of Finding f ydx. There is a wide choice of

tabular methods for finding areas and the final equations—the so-called
quadrature formulas. To data in graph form, they may be applied
with the same ease that attends their application to tabuluted dats,
In faet, their significance and use are best shown graphieally,

“p
(a) Trapezeidal Rule. The value of the integral f y dx which we

seek Is represented in Fig. 4 by the area 2,4 Pry2.  Exeepl for a re-
mainder &, — x, in width, let this area be subdivided, as shown,, intg

N
AN
NS ©
L 3 Ny
N,

7%
<

a

0 0y ¥y g B ’ Ty Ep
N @

Fre. 4. TMustrating the deli{{ﬁoh of the trapesoidal rule and of Simpson's 14 rule
(n-1) strips of equal and convenient width, Az, by ordinates at 21,
Bz e T The: approximation is made such that between iwo tc-
Cessive Interseghions of the curve with the ordinates, such as the points
4 and B, he §lirve may be roplaced by a straight line without appre-
ciably chﬁa‘ ing the ares of the strip.  Hence, by the trapezoidal rule,
the arefhol the strip 1A Bxor 1% taken as Az{y + y,)/2, and the area
umig’r}he curve as the sum of the areas of (n - 1) such strips, plus the
rémginder of width Tpip, OF ’

Ep y )
fx: ydx=Ax(§l+y2+y3+---+yn_l+?2—“)

+ @y — ) (%‘-—‘;—y) [14]

the value of the inferval Az, the cloger
roaches the true value of the integral.

Tt is apparent that the smalior
the value given by the rule app
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As Az decreases, however, the number of ordinates to be added together
inereases, so that unless an adding machine is available, the work be-
comes more tedious and chances for error inerease.  When the data are
given in tabular form, Az cannot be taken smaller than the z-interval
of the tuble, =0 that one of the other formulas must be used if an approxi-
mation hetter than that given by the trapezoidal rule is desired.

(b) Stmpron’s 14 Rule. Let the arca desired be subdivided, except
possibly for a remainder at one end whose area, s,, may be found other-
wise, into an even number of strips of equal width, Az, by ordinates at
21, Ts - - ¥, as in Fig. 4. The assumption is then made that between
poinis - and € the curve may be replaced by a parabola of the second
degree passing through points A, B, and € without changing appreciably
the arca of the two strips underneath, On the basis of this assungpior,
it ean be shown that the area of these two strips is Ax(y; + 4y2,5}‘—\g‘;3) /3.
Hence, v Simpson’s 14 rule the desired area is the sum fo(n — 1)/2
such double-sirip arveas, or AN

4 A | \
f ydy = —; (y1 + dys + 2ys + dys +-"+f.’c3{a\\_1 + ya) +

1

A

= =y + ya) + 205 + 95 T Al 4 s 0]

3 wiw.dbraulibrary . org.in

~“+“'é (#p — T){yn + y) [15]

Simpson’s 14 rule will usually, bubhot always, vield a closer approxi-
mation to the scetual area sought than will the trapezoidal rule using the
sarae Az, When the data fof $he interval over which the integral is to
be taken arve given an o&d\ﬁumber of strips, Simpson’s rule may be
used for all but the lagf $trip, whose area may then be combined with
that represented bysfand calculated by the traperzoidal rule.

{c) Simpson’s @ 4WRule. By reasoning similar to that for the 14 rule,
it can be sho "0, if the area under the curve y = f(z) 18 assumed sub>
divided intel(h — 1) strips of equal width, Az, where {n — 1) is now
djvisib]e‘bt\_f"tlu'cc, and it is further assumed that the curve above any
threg"sdjcent strips approximates a third degree parabola, that t-h_e
formil4 known ag Simpson’s 3¢ rule becomes applicable. In algebraic
form it states

Ty A
_[ yde 23?:5[@1 + o) + 2+ yr 0t
+ 3(y2 + ys + ys + Yo 4] [16]

Yor a given value of Az, Simpson’s ¥4 Tule will usually, but not always,
give & closer approximation than Simpson’s 14 rule.
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(d) Weddle's Rule. By subdividing the desired area into a number of
strips divisible by some integer m, and approximating the curve above
m such adjacent strips by an mth degree parabola, it is possible to ap-
proximate curve boundaries more closely than is possible with the sim-
pler trapezoidal and Simpson’s rules. One such procedure known as
Weddle’s rule is obtained by simplifying somewhat the general formuls,
form = 6. It states that

fnydx=3;\-0x[(y1+yn)+5(yz+yu+ys+y12+ym+---)

£ N\
4 (yatys + yo T 410+ s +"'),~\:\
'\ “
+6Fyo e to) N7
+ 2{yr + s + 4o - )]\‘ [17]

The increased chances for error in using this eguation are evident.
Few cases justify the use of this rule rather tha ane of the simpler rules.

() Iustrative Example. Let us considerthe results which these va-
rious quadrature formulas yield when appﬁed to a particular case. For
this we choose theoretically computed: values for spectral black body
radianey, di,, at any given tempergt‘ufé, expressed in terms of the maxi-
WL, By ruy, 25 8 function™ i thibHFBHGELT S WEIR length and tempera-

ture AT, The values of /@y ax for various AT values as given by
Lowan and Blanch ! are given in Table I11.

TABLE 111
SrowmG cR;\/EIQ,‘;:x For Brack Pooy Rapration as a Fenerron oF AT
»\ : e
i\"f"\m em K° B AT in em K° L
': A} (LS — [efFag—
AN
’“\‘ oo
\ 0.08 0.0014 0.22 0.8188
10 RUIT .24 L9139
.12 0735 .26 L9719
.14 L1880 .28 | L9974
16 L3476 .30 D068
18 L5230 .32 L9768
.20 G860

! Lowan, A. N, and Blanch, G., J. Optical Soc. Am., 30, 70 (1640).
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For the average ®,/®ymax f0r the range 0.08 em K° < AT < 0.32
e K° as expressed by

& 1 I 32 em K° P
Average —— = f r AT 18]
0

O?I\ mAx 0.24 em Kc 05 em K* 0??\ max

the trapezoidal rule, the Simpson 14 rule, the Simpson 3% rule, and the
Weddle rule in order vield 0.5852, 0.5854, 0.5853, and 0.5853, all of which
are close to the value 0.5854 which is yielded by more precise caleula-
tions using smaller intervals. That the trapezoidal rule should have devi-
ated most from the true average is to be expected, but that the Simpsoh, >

O\
7"\
L 4 N
E ™
(9
/ < }
LM

¥ Al %44 ‘\ I
. |
{ " !
i [ n.’l?" 1 i
Lol o™ i

I ! ! AN WWW.dbL‘Iﬁuqibrary,c rg.in

| A " o
I : P\ ] :
0 } { ! Ly
0 L 2 W) T
z‘ ’{{\ m
Fie. 5. Ta find the arearphd BCD, the lengths iz, ys - -+ may be substituted into any
A\ cuadrature formula.

PAY

14 rule shotld have come closest is hardly to be expected. The com-
parison sgxph;rts the fact that often, and especially where AT is small,
the sipaple trapezoidal rule will frequently yield results as accurate &s
the"8gte justify. Only ravely is it necessary—and hence desirable—to
use Wy formula beyond the casily remembered Simpson’s 73 rule. This
conelusion is commensurate with that reached in Chapter ITL, where it
was found that short pertions of most curves can be represented em-
pirically by second-degree parabolas. _ .

When the area of an irregular closed figure such as that of F_lg’ 51
to be measured by one of the quadrature formulas, we may divlde.the
figure into the proper number of strips by the paralle] equidistant Lines
8 2y, @9, - - - 2, and then substitute the lengths of those lines into the
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formula used. This procedurs is eguivalent to subtracting the ares
2, ADCx,y from the area 2, ABCx, 2.

5. Graphical Methods of Finding f ydx. (@) Polar Plunimeter

Method. There are many mechanical devices for measuring arcas. Most
of them, provided the data are once satisfactorily graphed, are more
rapid than using quadrature rules. Further, they are sometimes more
accurate, especially so when the desired area has very irregular hound-
arics. The instruments range from the extremely simple hatehet plagis
meter ! to such complex mechanisms as that which automaticallyinte-
grates the product of two empirical functions in a few sceon ¢ >DBe-
tween these extremes, the polar planimeter is probably the most suitable

Fia. 6. A disgram showing the main c-h'w.r;i:»ﬁ'.ferisf.ics of the polar planimcicr. Of
represents the pivot arm pivoted at @A\JP the tracer arm with tracer point at P,
and W the recording wheel, W -dbEatlibrary.org.in

. . <\ e A o
compromise with regard to_simplicity, applicability, cosl, availability,
and accuraey. There gn%s}everal forms of polar planimeters, differing in
minor details of congtoiietion and refinement, but the essential parts of
the instrument (Fig-6) are (1) the polar arm, 0, with a point. 0 which

Is maintained fixed during an operation; (2) the tvacer arm, QP, adjust-

able usual]j,(s;\s to length, which is hinged to the polar arm at ¢ and

tex‘minq‘c&fs}t one end in & tracer point P; and (3) the recording wheel, W.
Tomeasurc an area with the polar planimeter, the following steps are
eﬂ‘f@rrﬁed:

1. Locate the fixed point, 0, so that in tracing the figure, the wheel,
W, does not go off the edge of the paper, or over any folds or other
irregularities; the more uniform the surface on which the wheet rolls,
the greater the possible aceuracy of the measurement.

2. Place the tracer point, P, on the perimeter of the arca, noting

the reading of the recording mechanism atiached to the integrating
wheel.

1 Haynes, F. _B - and Haynes, 1. C., Rer. Sei. I natrumments, 2, 306 (1931).
Bears, F. W., J. Optical Soe. Am., 20, 77 (1939).
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3. Trace the boundary of the figure carcfully until the starting
point i reached onee more {this is important}, and note the new read-
ing of the recording mechanism.

4. Subfract the two readings to obtain the number of rotations of
the wheok

5. Multiply the number of rotations so obtained by the calibration
constant 10 obtain the arca measured. This constant may be caleu-
lated from the dimensions of the instrument by Eq. 19 below, or it
may be found by noting the number of rotations produced in tracing
4 figure of known area, such as a triangle or a rectangle.

More relinble values for arcas using a polar planimeter are obtdined
if the fignre ix traced a number of times—five say. It may alsp hglp to
trace the fgure five more times in a direction opposite to 1‘,"}1(:‘ﬁq~st, and
to average the results thus obtained. If proper precauti h§as to their
locations ave taken, a straight edge or a transparcnt dpawing curve that
coineides with the houndary of the figure measu -adMor a reasonable
distance may e used as a guide for the tracer dpba point.  Other sug-
gestions concerning the use and care of the ‘po\&r planimeter may be
Tound elgewlivre. O

That the munber of rotations of the integrating wheel ig direetly pro-
portional to the arvea traced is casilyeshiown. Consider the three move-
ments for the tracer arm shown ated} B, and G EigiBradpody the arm

&

!

[P S T

o _EICIS : 1 H -“h""'-.lt‘{a
{4) Q5 (B) (C) ™~
Fie, 7. Diaprams s;h*s,’uvihg areas swept out by fhe traccr arm of a polar planimeter

duftuy each of the three possible elementary motions,

—

Inoves a, d‘rg'tan(:c ds at right zngles to its length, I. The area gwepl
out is #@s and, if » represents the radius of the integrating wheel, the
a.ng\h% through which the wheel rotates is df (= ds/ry. In B, the arm
moves parallel to itsclf. The area swept out ig zero; so also is the angle
through which the wheel rotates. In C, the arm rotates about a ﬁx.cd
end., The area swept out is V4l’de; the angle d¢ through which the m-
tegrating wheel rotates depends on its position with respect to the fixed
end. In any case it is proportional to do and may be written as ¢ da.

All motions, no matter how complicated, that are possib.le for the
tracer arm of a polar planimeter as used (Fig. 8), may be viewed as &
combination of infinitesimal motions similar to those of 4, B, and € of
Fig. 7. I, for such a motion, we add the condition that at the end of



100 DIFFERENTTATION AND INTEGRATION

the movement the tracer arm shall occupy its intitial position, wo have
the result, taking account of the vector nature of ¢, that the sum of the
d¢’s, all of which have taken place about the @ end of the arm, is zero.
Tn actual instruments this condition is assured by having cnd O (Fig, 8)
of the pelar arm fixed so that the € end of the fracer arm is limited to the
arc of a circle, It follows, when an area is traced, that the integrating

g
=l

www.db}faulibral'y_o gin

Fia. 8. A diagram showing severalsiiccessive positions of the tracer arm of a polar
planimeter when, with the fixgd, point of the polar arm at G, the tracer point is
moved around the ares ehedefga! During this movement, the whale of the cnelosed
area is swept out by the tﬁc arm in the sarne direction, namely, counterclockwise,
and only once. Theo .crbss-hatched area, however, Is wwept out twiee, onee elock-
wise and once counterelockswise.

. .’\u
wheel will shew/only the veetor sum of a number of d6’s. We sec at
onee that-:Qse’ aren A iz given by
N° A = ZdA =< brZdp = I 119]

I .aéﬁual use, it is customary, though not necessary, to move the tracer
poinft, f:cfunterclockwisu about the area to he measured, and to reckon
a8 positive an area that is swept out by counterclockwise rotation of
the tracer arm about the end which is limited in moticn fo the arc of a
cirele.

.It- is interesling to follow through the motions of the tracer arm in
Fig. 8, and to sec what arca has been measured, Lot abedefga be the
area traced' f_)ut by tracer point £, As the tracer arm takes the suc-
eessive positions aa’, b, ce’, cte., back to aa’, the area that is cross-
hatehed is swept over first clockwise and then counterclockwise. In
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the summation of dA’s this area yields zero. Only the area abedefga is
swept once, and all in the same direction. Hence the A of 15q. 19 refers
to this arca only. In certain irregular areas, portions of the enclosed
arca to be measured may be swept out three times, or five times, or
gome odd number of times, but never an even number of times. More-
over, the net effect of the sweepings in excess of one for these portions
are always in directions such as to annul onc another in pairs. In
efiect, even in these very irregular areas, the traeer arm sweeps the
enclosed area only once, and all in the same direction.

A slight difficulty arvises in the use of a polar planimeter when; o™
gweeping oul the area with the tracer point P, the point @ at the june-
tion of the two arms deseribes a complete eirele about the fixed poiné0,
When @7 1= less than OF and for tost other eages, area 4 is th~ez'1 given by

A =00+ =R+ B) o200

‘&
of which % i the length of polar arm 0Q, and # the an‘é;ié ‘through which
the recording wheel turns in eonsequence of mot'@ns deseribed in Fig.
7A only. It is not the total angle through whi ithe wheel has turned.
It i that angle less the angle ¢ which (:orgssfgnds to @ = 27 radians.

{(b) Average Ordinate Method. This method, like the polar planimeter
method, requires that the data be graphed™ It is not suitable for the deter-
mination of all arcas. Praetically it 1 ﬁm‘r‘_}dﬁ?&ﬁ’?ﬁﬁa‘%}%@g%c whole
area can be broken up into several\parallel-sided approximations to trap-
ez0ids such as were assumed fo¥ the various above-listed tabular methods

for finding f ydr. For %Qh ‘cases, it eombines with high aceuracy the

simplicity of the inacdurate counting squares procedure.

The method cardyést be deseribed in connection with an application,
Fig. 9 shows a tépperature-time curve for a standard compensated-loss
calorimeter such as might be obtained when, with its aid, one secks to
determine #hs amount of heat lost by a heated specimen of material on
coaling{f*ciin some high temperature to that of the ealorimeter. The
foremberval is the period previous to the receipt of the heated specimen
andNdring which stirring of the calorimetric fluid is principally respon-
sible for the change of temperature. The test interval is the period
during which heat is transferred to the fluid by the heated specimel} and
a near cquilibrivmn of temperature is being established. The after inter-
val is the final period during which temperature variations are a com-
bined result of stirring and of Newtonian leakage. One seeks the tem-
persture interval 7, — T5. This involves finding the area b'bdd'd’.

The spproximations to trapezoids which we will use here are thos_e
determined by the 0C° line, the temperature-time curve, and the ordi-
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nates at 4, 6, 8, 10, 12, and 14 min. We first locate a straight edge so
that 1t passes through the interscetions of the 4-min and the 6-min
ordinates with the temperature-time curve. Then on the 5-miin line
we locate the point m which is two-thirds of the way from the straight
edge to the curve. Insofar as Simpson's 14 rule is applicable, m'm is
the average ordinate for the area between the 4-min and ih: 6-min
ordinates. Next in order points «, o, p, and ¢ are loeated similacly, and
similarly they represent the upper limits of other average o dinates,
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Fiec. 9. The temperature-ti os'{.‘m\’re for & standard, eompensated loss calorimeter to
which g, heated specimen of material has been transferred.

The upper limif of, e ‘average ordinate for the area between the 4-min
and the 8-min prdinates is now determined. It is the point » on the
middle or Gég':ﬁxiine where that ordinate is eut by a straight line between
m and n. : itnilarly s is the upper limit of the average ordinate for the
a.rea bgt\;x{een the 8-min and the 12-min lines. On the same hasis, posi-
tionfon the 8-min ordinate i the upper limit for the average ordinate

fothe area between the 4-min and the 12
the 12

4

= -min fines. The ares between
-min and the 14-min lines may be similarly combined with the
area ‘asasociated with point ¢ Since, howevor, the time width of this
area 1s.only one-fifth that of the combined areas, one must select, on the
straight line passing through ¢ and g, a point u which is but one-fifth of
the way from ¢ to ¢. Accordingly the ordinate u's is the average ordi-
nate for the area between the 4-min and the 14-min ordinates and the

arca, sough't i3 422 min C°, How thig may be used in deterrining
T, — Ty will be found clsewhere,
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Depending on the seale and the earc used, this method is susceptible
of high precision. If the data arc available in the form of an aceeptable
_ eurve rather than in a tabulation of y-values for equal s-intervals, this
method might well be superior to all other methods; particularly if
time is o factor,

(&) Cut-and-Weigh Method. f the figure whose area is desired is cut out
and weighed, ils area can be found by dividing its weight by the weight
per unit area of the paper on which

it is drawn. Obviously this pro- e ]
cedure would make the figure unfit E"ﬁrm;_ r
for any further use, so that in prac- Photocell ==
tive the outfine of the figure is traced Tra,';:{gr"m?ﬂ

onto a second sheot, preferably of S

heavy paper or metal foil, which is Light |

]

i e ol . - Beam 170 = |-
thfan <.,1|t G| w,1;,>;h.ed. EILF)I‘S may '“,]'\1"30“““5]“ -
arise in faulty tracing, cutting, and ~'| Lenses
weighing, «1nd through nonuniform- S C'm;”_\: Aperture
: - : § ate
ity of surface density of the heavy & |

==

paper or foil, This method is rela- A 1,

T e e L

tively inaccurate. For rough work, \ =
it may prove convenient if a polar oN° S
planimeter is not available. JONT www dbraifbrary brgdn

() Photoclectric Method., Aphﬁté: Photacell ™ Miiror
electric device for measuring \areas Ii__l_

developed in part by ghé Botany ) ]
Depurtment of the Ur\ﬁversity of T 1:]-' A ;r};?aioelpfg;jr :,i?l(;; 1:22
Chieago is now offered commerci- E;Eﬁ;?ffmm@m &;o_') ’
ally by the Ametein Instrument
Company. Li’é{fi}'ﬁom a low-voltage lamp (Fig. 10) is made paral.l el
by a condensing lens, and then focused by a second lens onto a barrier
layer photioecll. The cutput of this cell is halanced in a suitable bridge
arrangeﬁit;ﬁt- by the output of a second ecll, illuminated by the same
lafip)y “"The objeet whose area is desired must be opaque or transiucent
and Youst fif into & 10-inch circle. [t is placed nto the parallel light
beam, thus reducing the output of the first photoeell, The b.ridg'e
citcuit is then rebalanced by adjusting a slide-wire resistance which i3
calibrated directly in units of area. Advantages claimed by the manu-
facturer ave high accuracy, high speed, and no required operator cx-
pertence.

8. Summary. Methods other than those of differential and integral

caleulus ure often desirable for obtaining values of dy/dz and f ¥y .
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To find dy/dz at the point {z,y} when the data are presented graphi-
cally, we muy defermine the slope of the fangent (or sometimes of the
normal) line, or obtain it by the more laborious and more exact sccant |
method. Theslope of the tangent line, and hence of the curve, is given

by
dy) Y2 — i
A L .} i
(dd? F Fo — X [)]
where (z1,:) and (zs,%2) are two points on the tangent line. )
If the slope of the curve at a specified peint is to be oblained Frin®
the slope of the normal to the curve at that point, the cquationghy be

used 1s £\

(@)2 o\}’ N
(d_y) S D [7a]

L ¢
dz / notmal

%
v

of which (dy’/dx’), a seale fuctor for the graph, .B'Q:p}esents the ratio of the
change in y corresponding to a length measived along the y-uxis to the
change in = corresponding to the same 1qng:tﬁ measured along the v-axis.

When the seeant method is used to @etermine the slope of a curve at
a specified point, the slopesmiw:ﬂﬁug;is Iébmn:ﬁggm@hnf which cut the curve
at that point, are graphed as a funetion of Az, the change in % in going
from one point of crossing to/ths next. The secant slope for Az = 0 is
the slope desired. It is conyenicent for data in tabular form.

When the data are tpbu ted, we may use the equation

dy I ‘) A2
do f&}fﬁyo + 2n — 1) (—2?)
N\W
‘ \\ + (3% — 6n + 2) (%%“)
”\\ ) . . Al
\ + (@n® — 1827 + 225 — ) (-—ﬁ‘?)
+ ] | [11]

where (zq,%0) is & tabulated point, Ay, A%y,
differences, Az is the common tabular z-inte

To find

ete., are successive tabular
rval, and n = (x — xg)/A%.

y dx, we may usc one of the quadrature formulas for

either tabular or graphical data. Tmportant rules and formulas arc
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(1) the trapezoidal rule:

fk:jﬂy®ﬁ=m(%+mr+%+~~+%Fr+%) [14]

{(2) Simpson’s L4 rule:

Ax
A=yl 4y + 20 +tys+00) + 40 +ya +- )] [15)
{(3) Simpson’s 34 rule: ~
3Ax 'S
A== Tty + 2w + 97 + o0 +--0) N

+&9] [16]

"
A= 3:303 [(y1 + yn) + 5y + 6 + ys i‘ X )
+ (y3 + s +&£—I\- éhl +-00)
+ 6(ys "|"?4'10'+‘x Yis +)
+ 20y R Yis + 310+ )] [17]
Measuretnent with a polar pla@ﬁiéier“ig‘ﬁ"ggggﬁgbr‘éae%‘(?('f%fnﬁnding

T3yt mtustus
) Woddie’s rule: ”

f yde. Although especialmly\‘;\rell suited for measuring irregular areas,

+ 8 )
the planimeter may be 10d Tor all graphical data as well as for tabular
data if these are first plotted. In “emergencies,” or for rough work, the

cut-and-weigh In’{.‘i;'l'l?)d may be used for finding f y dz.
N\
N\ PROBLEMS

2 8

1 Usl'.qé e plot containing three curves drawn in connection with Problem 2 of
Chaptend1, construet with care a graph showing TdB/BdT = f (T} for tungsten for
t'hE\(&ﬁP;c 2000° I < T < 3000° K. TUse the straight edge tangent or normal
methods. Use different symbols for values obtained from the three different curves.
What is your conclusion ss to probable accuraeies for the three sets of _values? ]

2. Using the data, reported in Problem 2 of Chapter 11, determine with the aid of
& tabudar method the value of TdB/BdT for tungsten at 2000° K, 2200° K, 24_00° K,
2800° X, 2800° K, and 3000° K. Compare these values with those obtained in con-
nection with Problem 1 above.

3. Repeat Problem 2, making use of the graphical secant method. .

4. Using the data given below for the spectral brightness of a black body at 2400 i K
8 a function of wavelength, determine its brightness at that temperature using
{1} the tabular trapezoid method using & 0.01 g interval, (2) the tabular trapezoid
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method using a 0.02 g interval, (3} the tabular Simpson’s 14 metho.d, and {4) the
graphical polar planimeter method. For (13, {23, and (3) use an adding w .chine i{
available. Tlow do the four determinations cheek?

»in . candles »in . candles
B

u B, in o . 11 cm2 .
0.41 0.09 0.61 619

.42 0.38 .62 506

43 1.38 .63 379

.44 2.30 .64 268

45 6.50 .65 175.5

.46 12.45 .66 106.0 A .
A7 22.4 67 59.2 \\\
.48 40.0 .68 33.3
49 9.6 .68 16,95

.50 124.0 70 0950
51 221 T NN 480
.52 3568 .72 N\Y 2,50
.53 487 .73 A, 1.30
.54 606 T 0.65
.55 706 CeN\ 0.32
.56 786 s 0.17

BT 828 o7 0.08
.58 A\

g(} ??;? www . d bl‘a‘uli‘bl'ary .org.in

.60 716 N

B. Prove the relation expresg by Eq, 7a.

6. Using the data of prob % p- 268, delermine, fo within 1 part in 160,000, the
ratio of the mean (0° HJ\IDO C calory to the 15° C oulory.

7. Bhow, for the case Qf’ﬁ. parabolic curve of the form 4 = o + bx + cx® passing
through the points A‘,,\Bf C of Fig. 4, that the area included within the houndary
wadezary, in aceontPwith Simpson’s 14 rule, is given by ae(yy + 440 + ol /5



CHAPTER V
FOURIER SERIES

1. Introduction. A Fourler series ig a convergent infinite series com-
posed of xine and cosine terms whose successive angular values are pro-\

portional fo the cardinal numbers, thus: O\
. . . P\
y = fi) = a;sind + agsin 20 + a351n36+---+§”\\
+ bicost + bycos 26 + by cos 30 4+ - ~‘ R
N
By . ) 8
=2y E (s SID M + by, COS MB) \ [1j

2 m=1 ) x:\ s

Some authors use by not by/2 for the constant’}erm. The reason for the
present use will appear later. That cert-ahi.'énries of this type could be
developed was known Jong before Foriei’s time, but certain of their
properties as well as their possibilit;iésiﬁiw%{sgg%giﬂ?bgi; r%lcl)_]erir}\s in the
field of heat were not, then appreelited. Fourier’s views, Hirst presented
to the French Academy in 18{, were published in 1822 in his Theorse
analytigie de lo chalewr. 0N

Fourier scries ropresent means whereby a very large number of prob-
lems of certain types fiay be solved, In such instances, their value lies
in the fact that with Atheir aid houndary conditions, cven when highly
complicated, mapysually be expressed in forms which are comp::;mt-ible
with the widérlving differential cquations of Laplace and of Poisson.
Given the}ﬁ&lndm’y conditions as to temperature for a sheet, a rod, or
3 block\éf ‘material, certain of its physical characteristies, such as den-
sit; ,‘-‘épéciﬁc heat, and thermal conductivity, and the dist-ribut.lon of
tetg)e}:-l,t-ure throughout #t sorue one instant, it is gencrally possible to
specify with the aid of these series the distribution of temperature
throughout thereafter. In ecasc, however, the distribution of tempe{'a—
tare at sorme instant cannot be aseertained, it is still possible to sp ecily
the steady state distribution. Analogous problems in acoustics, radia-
ton, and clectricity may be handled similarly.

Industrial applications oceur wherever vibrations are a_mattcr of
concern, as in the fields of electrical enginecring, aerodynamics, tcleph-
ony, musie, radio, and sound projection. The designer for electrical

107
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generators and transformers must meet a requirement of noninjurious
harmonics (vibrations, multiples of the fundamental, which correspond
mathematically to succeeding terms of a Fourier serics), and the tester
must know how to determine their presence and their intensities, The
airplane designer must similarly guard against possible harmonics of
frequencies that are unavoidably present in cngine operation. The
tester again must know how to deteet their presence and to mensure
their intensities. In telephony, radio, and sound projection, distortions
duc to emphasizing or minimizing harmonies need to be reduced. In
musical instruments, the harmonics introduced and properly controlldd >
determine the quality of the instrument. In all the cases named, exeri-
mentally observed or recorded effects for a definite angle swepteent “or
2 definite distance traversed, or for a definite period of tinde, ire the
bases for design, correction, or control. "G

2. Functions Expressible by Fourier Series. Mogt of the funciions
which the experimental worker desires to expandiimte Fouricr scries
involve angular displacement, time, or distance ag theindependent vari-
able. Other physical quantities, of course, may. be and are similarly
involved. The dependent variables concerned are much more numerous.
Of the many combinations, we may me;ftién three of importance to
industry: those concerned with (1) the graph of the electrical enginect
showing instantaneous Gmﬂmmﬂ%@éﬁi’&}aeﬁr@éﬁumtiti% for an AC
generator, transformer, or circuit~ag'a function of the phase angle, (2)
the graphs of the builder of m@Rical instruments showing the displace-
ments of some portion of a, stﬁhg from its normal position as & function
of time, and (3) the graphswof the vibration specialist showing digplace-
ments of the \_rarious'.p}g,rts of a structure in vibration as a function of
position. P4, _

Corresponding,te’these threc groups of particular interest with inde-
pendent Va%z"}e‘s represented in order by 4, ¢, and 2, we shall develop
Fourier sexies'of the types,

*

\ y = J6),for 0 < 8 < 25 [2]
N/ I
y =j(? z) =F @, for0<t<T (3]
2
y=f(-;x) = Fa(x), for 0 < ¢ < ) (4]

in which 7' represents the period of a simple harmonic motion and A a
wavelength. Tn all three cquations, the quantities in parentheses repre-
sent angles, a necessary condition, since the series are trigonometric
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Often, as suggested by Ugs. 2 to 4, the functions to be developed
into Fourier scrics are cyclical.  When graphed, inspection shows that
a certain portion by successive repetition forms the whole. The mini-
mum such portion forms a cycle,
Tlustrating =uch eyclical varia-
tions, Fig. 1 shows the supplied P
potentinl dilference, the current,
and the instantancous power for g
particular capacitative eireuit as
a function of time. Harmonic fre-
quencies which are multiples of the T
fundamentsl AC  frequency are <
guite evident. ‘

Frequently in theoretical physies .
we are concerned with a distribu- g ¢ Oscillograifis Bhowing supplied
tion of some quantity with distanee potential differénde, current, and in-
in which there is no eyelical repe- stantaneougypewer for a particular

D eapacitative dircuit. (Kerchner, R. H.,
fition for the funetion f = (—f x) . and Qorcoran, G. F., Allernaiing Clir-

oo cuits,\p 129, Johu Wiley & Sons, Ine.,

although the function itself extends  New York, 1938.)

to infinity. 1n this case, a Fourier %%
. N . ON .db ihy g

feries may be used, in which in effttet A l%gaﬂmesrian‘féh%gy'fh% form of

the series is modified, however,to become a double integral known as

Fourier’s integral. This willbe discussed later.

L\

iy X

Ll

'0
A\ ¥
\:

0 1r/2 T 3% 2T

Fia. 2. Graph of & function given by y = 0.56 for the ranged < 6 <= and by
y = —u/4 for therange = < 8 <2

The limitations as to form for a function of a single indepe_nfient vari-
able which may be expressed as a Fourier serics, are surprlsmgly_ fow.
In faet, 4o long as a function is real, finite, single valued for the inde-
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pendent variable and possesses only a finite number of finite discontinu-
itics, a series may be found to represent it.  One part of a evele, if evelos
are present, may have no apparent relation to another part. [lustrat-
ing this feature, I'ig. 2 shows a graph for which we shall develop a series
later.

3. Types of Fourier Series. The most common type of Fourier series
is that represented by Fu. 1. It 13 known as a whole range sine-cosine
serics. However, for many purposes, it is desirable to have u dilferent
form of geries in which the series of cosine and sine terms of Kq. 11
pairs are combined to yield a series containing sine or eogine tertms only
Doing so involves introducing phase angles in accord with the fr}lhmung
equation. O

N

a5 . 5 o bm.
O sinmb + b, cos mf = ‘\/am + b2 sin (m& + tan.“_!
\\ i
= \/a!fag + bmz [64] (?'K@‘— ta,n_' a'!-‘s_-) [5]
R\ b
Verification of Eq. 5 fellows at once Wh(‘ndi};a’ right-hand members are
expanded in terms of sines and coamcs of mf} and tan™! (b Tyl

may be rewritten as A
www d-brauhbl ary.org.in

Y= 56) = 2+ D Ao sin (08 + en)
=1
,zmz\ '
%} N\ -] ( Tr)
= A : . — = 6
“.2+; meos | ml + e 2 [6]
of which ;‘i\ '
."\’t"\” m ‘\/am + b 2 E7]
and ,x" i
o \ ,:3 € = tan ! z-,i [8]

Eq. 6, in all respeets the equivalent of Eq. 1, has an advantage over
Tiq. | in that it shows dircetly the phase relations for the various fre-
quencics, which, though present in the form of Tg. 1, are not so evident.
In the form of Fq. 6, each term separately, rather than by pairs as in
K. 1, represents the whole contribution of a given frequency or har-
monic. To distinguish harmonies from one another, cach iz given &

number corresponding to its m. Thus for m = 1 we have the first har-
monic or fundamental. Corresponding to m = 2, 3, 4, ete., we likewise
have the second, the third, the fourth harmonies, efe.
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Making use of the well-known relations

cos mi = — [91
and
) ea’m\‘i‘ _ e-—imﬂ
sin mf = —23— [10]
lig. 1 may also be expressed as
" N
; bl] i . i . —imf
¥ = f(\ﬂ) = 2_ + 5 Z [(bm - %am)e + (bm "I_ Zam)e s :| o El\l']
m=1 " .

{\

The cocflicients of ¢ and ¢~ are conjugate, a chara{:tgmfsj;ic often
permitting considerable simplification of computations. gy 11%is mueh
used. O\

In addilion to the whole range sinc-cosine series, there is a half-range
sine serics ,3\\'

=z A\ N
y =filf) = E Oty SHNRY [12]
m=1 Yoo/
and a half-range cosine series Q \\
Bo '."’:m w.dbraglibrary org.in
y = 12(0) = 5 B cosmg Y OTEM [13]
& m=1
L . AN . - 2.4Y which
A sine scries, as is more orglesk evident, yiclds a graph (Fig. 34) whie
I8 symmetyical with respec %o the origin or to points on the #-axis where

L >

\’..7 FAN
Yo ¥0

~QOV N
] ¢
(4) (B)

Fie. 3. (4}, Graph of a sine series. (B). Graph of a cosine geries.  For the range
0 < # < 7, the graphs are alike.

= denm. Similarly the half-range cosine series yields a graph (Fig.
3B) which is symmetrical with respect to lines perpendicular to.the
b-axis at these same points. These scries will be diseussed more fully
later,
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Lastly we refer again to Fourier’s integral, a limiting form for a
Fourier whole range sine-cosine scries when the range of the cyele is
infinite in extent. We shall discuss it later.

In what precedes, it has been' tacitly assumed that the origin of co-
ordinates for a problem has been somehow fixed and that the series has
been developed accordingly. It is always possible, however, for the
operator to select what shall be the beginning and the ending of a range.
When the function is cyclical, eerfain points will appear more natural
than others for such choices. If, for instance, there are two loops to
the graph of a cycle, one positive and the other negative, and both are,
of equal length, a point of intersection of two succeeding loops with the
f-axis may be chosen as the origin, Instead, however, a pointd fids ay
between two such successive intersections will some tlm@‘- 'ht' chosetL.
Which choice is to be made will depend to some extent ,,(ﬁf”ffhe 1ype of
series desired and that will usually depend wpon othg*\icimsi(lerations.

4. Some General Considerations. That Vouriet\geries will conv erge
has been shown. The proof, which is said by Byar\l 'to be “elaborate,”
is assumed and accepted here. RS

Connected with this feature of convergu e are the quea‘uom of inte-
grability and differentiability. (Jrantmg ednvergence, it is casily seen

that a Fouricr series may alway cib IHI} ,egratpd though not always difier-
entiated. To Dlustrate, the"in egm SR s expressed in Eq. 1
when integrated term by term, yiglds

2 ®
ff(ﬂ) da=a, (1 — cosﬂ}i—{*\aj (1 — cos28) + N (1 —cosdf) 4---
o w72 3

(Ba
+28+bl‘%m6+—sm26+ % sin 30 + - [14]
while the derwéhve is given by

N

cﬁfw) =,’§*,1\cos 8 1+ 2a5 co8 26 + 3a;cos 36 4 -
.\" 3

VUV
Granted that the cocfficients of Eq. 1 form a converging series, it is
evident that those of Eq. 14 will also converge, since term by term, in
comparison with those of KEq. 1, the coeffivients of Eq. 14 are progres-
sively smaller. At the sumo time the coefficients of Tig. 15 term by term
are plogr(,é.sn» ely greater. While convergence is always agsured for the
integral, it is not so assured for the derivative.

— [by sin 6 + by sin 26 4 3by sin 36 +- -1 [15]

1 Byorly, W. K., Fourier's Series and Spherical Harmonics, Ginn & Company
1803, p. 38,
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Two questions may be propezly asked at this point, (1) Is it prob-
able thal a smooth curve, for example one of those shown in Tig. 1,
can be represented faithfully by a sine-cosine series, or is it just an
approximation? (2) For a graph of the type shown in Fig. 2, what'
value or values does f(x) possess at § =  (strictly # radians)? Reply-
ing to ihe first question, the answer is that an cquation with an infinite
number of arbitrary constants ean be made to yicld a loeus which passes
through an infinitc number of chosen points. Viewing a serics as such
an equation and the line of a graph as the aggregate of such a sclection
of points, the probability seems rcasonable. TFurther, tests with actuald
series seem to indicate no exception to the possibility. As to question
(2), the answer is that the computed value of f(8) for § = 7 for the fung-
tion graphed in Tig. 2 is represented by a point midway betwéed the
line y = (.56 at § = » and the line y = —#/4. The exact'}value iy
+'rT,.f

5. The Coefficients of the Whole Range Sine-Cosing ’éénes for f(8).
The well-recognized procedure for determining the coefficients of Eq. 1
follows. {1} Multiply both sides of Eq. 1 by tbé‘{:'iﬁe or cosine factor
of a sclected term on the right. (2) Integratebath sides of the equation
obtained with respect to 8 between the Hiis 0 and 2« (strictly 2
radians), (3) Evaluate the eoefficient of»fsht term whose sine or cosing
factor was chosen for the first step., ’l‘ewﬁw&hm@é}bm wloadg isvaluate
U, by, and b, of which m repremnts any other subscript than zero.
Steps one and two yield Q

2ar

ffﬁ)ammﬁdﬁ-—f b;&mﬂbmmﬁdﬁﬁ— 2o 5in 28 sin me e+ - - -
0

.\ :I— am sin®modg- -+ f 2 sin mé 4o

\
u.f'\ +f by cos @ sin me de¢ + - - - [16]
i}

N
2N\
)

\}.. —

Step three leads at once to

2w
a, =1 | 700 sin mods [17]
T Jao
27
Except for the term a, sin® mé d8, all terms on the right of Eq. 16

0 :
separately equate to zero. That this is true can be shown rather simply

either mathematically or physically.
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Similar procedure for by, understanding that the trigonometrie factor
multiplying it in the series is 1, leads to

2 2r 2 2
fl8) do = f a4y sin 8 dé + f o 5in 20de + - - -+ j %ﬂ- dg
0 0 0

0
—|—f by cos 8 df - - (18]
i
=ahy
| 2 2\
by = - f g de 197t
T Ja AN
In like manner b,, may be cvaluated, and we obtain \ O
1 27 ...( ‘.:‘Z
b, = - F(&) cos ms do ¢ Q [20]
TJo )

¥q. 20 evidently includes Eq. 19 as a special case With m equal to
zero cos mf becomes 1. O

With recourse to tabular or graphieal irgté:gz}ation if necessary, it now
becomes possible to determine the cocffielents of the scries of Eq. ]
when f{#) is expressed cither in gquati(ﬁﬁorm or graphically as in Fig. T.
The process may or may ﬁ%%ﬁe%ﬁ%ﬁ%ﬁgfr&@ggﬁfng largely on the num-
ber of terms that must be used$d obtain the desired accuracy. For-
tunately, a series often convefges so rapidly that only a few terms need
be evaluated. \

6. Evaluation of the €gefficients for a Particular Whole Range Sine-
Cosine Series. To illastrate the procedure, we shall make use of the
function graphed\it/Fig, 2. Its value is given by f(6) = /2 for the
ranpe 0 < 8 <x?f;ﬂ;ﬂ.d f(6) = —x/4 for 7 < 8 < 2x. There is a discon-
tinuity at ’9\\;\17 Eqs. 17, 19, and 20, applied directly, yield

A ] x 8 . 2
NS Oy = [ f — sin mf dé + f =T sin m8 dﬁ] [21]
a\¥4 T 0 2 * 4
o = 2] 2]
"M |m odd

1
= _ — 23]
{am Qm]m oven [

! A stated above, some authors use by not bo/2 as the constant term of Eq. 1.
For them the value of Iy is just 14 that given by Eq. 18, Using £p,2 for the first tel'I,n
has the advantage that, when so used, the general equation for the various bm'8
applies to By also.

AW
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o=t [ pur [ ]
0 == . 2 j ?dﬂ =0 [24]
b‘z(_/‘wg s 6 d e
=11, 5 Co8 ™M de +£ Tcosmﬁd&] [25]
1
{bm T E‘J;Jm odd [20]
[bm = 0] m even [27J
= {'5)-[~in9——1---sin29+l—“ 36 L e ] '
y=10 = 2 X2 gU T [
1] 1 1 O
- eos d +§Q eos 38 + 52 ¢08 56 :f—(;;:.-" 28]

Checking shows the following relation betwceen ¢ and thefeé)mputed fi®

9 o T T o b E I,
4 2 4 4 £ 2 4
‘\
76) _if T x o X o — :_” -m
8 8 4 8 8 W4 1 1 8

s w.dbraulibrary.org.in
As expected, F(8) for 6 cqual to 0, g,58nd 2 is the mean of the values
predicted separately by the two linds of the graph.

7. The Half-Range Series fary(e). If one is interested in the values
for f(8) only for the rangathX 8 < x or if the portion for the range
T <8< 2 iy synunet-ric&* in either of two ways with the portion for
the range 0 < ¢ < w,/9he has the possibility of developing the function
for one or the other'of*two half-range series, a sine scries corresponding
to the ¢ torms of\’]t;h? 1 and a cosine series corresponding to the & terms.
Generally sug :héllf-rauge sine or cosine scries ave preferred to whole-
range sericg\3ince they involve less labor. Moreover, through contain-
ing termsOf one type only, they make it possible in certain computations
to ¢ ﬁi}él}; with cerfain boundary conditions when otherwise it would
be ir&yossible‘

If the graph of the whole range is symmetrical with respect to a point
on the g-axis at ¢ = 0, =, 2, e;a(:., that is, if the funetion is odd, as in
Fig. 34, the series can evidently contain only sine terms. The term
@ 80 m@, whatever the value of m, will have values of opposite signs
though of the same magnitude when successively # — & and = + § are
substituted for 4, while, for the term b, cos m#, the corresponding values
will be both of the sume sign and the same magnitude. Obvicusly, on
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the other hand, if the graph of the whole range 1% symmetrical with
respect to the perpendicular to the -axis at @ = 0, =, 2=, cte., that s,
if the function is cven, as in Fig. 3B, the series can contain cosing terms
only.

Comparing 4 and B of Fig. 3, we see that they are ldentical in the
portions in the ranges 0 < 8 <, though not gencrally clsewhere. It
appears, and is the case, that a given line in the range 0 < 4 < 7 may
therefore be represented by either a sine or a cosine series andd also any
number of combinations of part sine and part cosine geries,  Qutside
the stated range, however, all will difter. ~

In developing a half-range series, the procedure for determining ‘the
coefficients is the same as that for the whole-range series. A SSI_IIIliBé Ahus

N\

y = f1(6) = a1 sin f + o 8in 26 - ez sin 30 4 14 Ny [297

multiplying through by sin mé, integrating with respeétyto 8 between
the limits 0 and = (not 2 as for the whale range); ang evalualing, one
obtains

2 T . X'\\:
Oty = — f1(6) sin mb 46 (301
ki 0 “. 3

Similarly for the half-range cosine serias assuming
www.dbraulibrary org.in

y = fol8) = % + B cos,iﬁgﬂl’ﬁz cos 280 + Bz cos 38 + - - [311

we obtain

’{"‘g 2 ar
KB = - f J2(6) do {32l
A 1]
and
¢ 2 [
AN B = - f fo(8) cos mo do [33]
£ 1]

G

Tz, 30, f&?,\\hd 33 differ from Egs. 17, 19, and 20 in that the constants
preceding the integrals ave twice as great and in that the upper limits
of 'th\i:"\mtegrals are one-half as great. It is of interest to note that, by
ckﬁn*ge of the independent variable from # to ¢ where ¢ = /2, it is
possible to obtain a normal half-range series for the new variable ¢
which ig equivalent to the whole-range for 8. Referring o ¥ig. 2, for
instance, the range ¢ < ¢ < = would cover the whole range in 8, namety
0 < & < 2r. TFurther, the appropriate half-range series in ¢ In terms
of cosines, say, once developed, can be converted by sibstitution inti
a cosine series in # with the 8, term containing the angle 8/2. “he fane-
tion for the whole range, as initially described, is now described Ly 2
cosine series,
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8. Evaluation of the Coefficients for Particular Half-Range Sine and
Cosine Series. Consider a sine series to represent, between the limits
+ and =, the straight line whose cquation is

[
y=JO) = 3 [34]
Substitution in Eq. 30 yields '
2 f e midf = + 1 35
wm o — 8l == —
=S 2" m [35]

with the sign positive when m is odd and negative when even. We havel
e * N ¢
therefors O\

y=f,(6) =sing — L sin20 + ksin30 — Lsin 48+ O[36]

. . . . . .
For the cosine series representing the same straight lineimnthe range

0 < # < a, we obtain KV
2 {78 T V.
= - —dt =~ 37
Bo T ./0. 2 ‘ 2 :.\\: [37]
2 ' B ‘”;\' ’
B = — f - eOR MEde [39]
ko i+ 2 & \
When m is odd, 8, has the value — (2&?@3@.},3&@@1&%1{9{@‘%5@ value
is zera, There follows ~~:’~: "
r 2f AN 1 1
¥ =18 = - — = cofP+ 5 cos30 + 5cosde+--- ) [39]
4 =\ 3 5

A\ |
By trial both Iiq. 36 &nf}\Eq. 29 are found to check. The process is
~ simple for the latter{dt “points whore @ takes the values 0, T.rfd-, /2,
37 /4, =, though, fghboth end values, one is belped by recognizing that
‘u\:' ,
” \ad 1 1 1 b .
’\§ ]—]—3—2—{—32+7—2_|_=— [40]
v Ol ' ..
No tml;lbfe is experienced in checking Eq. 36 for similar values of 8,
thmﬁh one is helped at /2 by recognizing that

1 1 T
S TR == [41]
+ 9

At = & hecausc of the discontinaity in f; (6) at this point, the va.lue of
the function is midway between +w/2 and —7/2. This va.lue‘ is not.
approached as a limit. However, both Eaq. 36 and Eq. 39 desc.rlbe the
same curve between 8 = 0 and § = , though in the region outside they
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Fiiz 4. Showing in downward progression the separate contributions of the SUCCEERLVE
terms of Eq. 36 (sine series) at the lefi and Eeq. 39 (cosine series) at the right, and
the suceessive approximations to the straight line y = 02 in the range 0 < # 4_ Lo
Each new term is represented by - - - and the approximation to the straight line
produced by its inelusion by — — —-
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differ greatly. Tt is interesting to note the separate contributions of the
succecding terms of Eqs. 36 and 39 as shown in Fig. 4. It is very appar-
ent that the cosine serics converges the more rapidly.

] 2
9. Series Representing y = f (%T t) and y = f (-2—}-? x)- It is well to

repeat that here T represcnts the period of a simple harmonic motion,

that of the fundamental of a vibrating system, and that A is a wave-

length, that of the fundamental of a wave motion. Tho forms of the

whole-range and half-range series are like those for y = f(§). Their

coefficients may be obtained by procedures exactly like those used din

obtaining corresponding values for f{8), 'Thus, for the whole-rangpeine-
{

cosine serics, we have K

f’?n’) o [ . ( 211') ( 2«)]
=I\zt]= — i g k) 42
¥ fkT_f +.; 'y, sin m_Tt +bmcos\ni"T [42]
= 2 f 7 (217 )sm (m 2 t) di [43]
Cm = pr ra \
T 1 7 ".‘\\’
.
b, = iff(zi:f )dt N0 [430]
B, = _2:{_1 f(QT_Tr E).pb;e’%‘z_T_‘.’Hb)adfhbrary,org,jn [44]
Ay N

For the half-range sine series\wﬁre have

?)’“flﬁ2 ) Zamsm(m%ﬂt) [45]
\@.{s;": % fn o (lﬁ z) ¢in (m % z) d [46]

For the b @Ii\l\inge cosine serics, we have

Qélﬁ.,.;yzfﬁ(zqzr)_@erzﬁmm(m ) [47]

go=n [ 5 (550)a [#7a)
B = %J;mfg (%’” t) eog( = )dz [48]

2 ) . S
An analogous equation involving f (f z) is obtained by substituting
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z and  for £ and 7" of Eq. 42, and the equations for coeflicients a”,,, b”,,,
o', and B, for the (x,)\) series are exaetly like Eqs. 42 to 48,

2 2
If in Iigs. 17, 19, and 20, one replaces & by é—rt and \1—1- x, he obtains

fOr @y, bo, and by, identically the expressions for the primed and the
double primed constants of Eqs. 42 to 48. "This indicates that a., a's,
and a”,,, for instance, are the same guantity arising in different connec-
tions. That in these expressions we have 2/T and 2/x where belore we
had 1/x is a consequence of the fact that the eyeles for the nde puldent
variables here end when the values 7’ and A are reached whereas in the ™
preceding case it ended when 27 not s was reached. Some uub‘h\m%
use 0 < £ < 2T and 0 < z < 2X for ranges.  In that case the umsfants
preceding the integrals of Eqs. 42 to 48 are reduced to 1/7, 1/ X ete.

10. The Limiting Series for the Range 0 < x <= a,hd Fourier's
Integral. With the understanding that & of the series,. (¥

2w b
y = f(; x) = F() =3 A

W

2 2
— 2 — 49
4+ Z [am sin (m EX 3,) + b, cO8 (m - :{)] [49]

WWW dbrau].lbl ary.org.in
will be allowed later to increase mdéﬁmtc]\ recognizing that A will then

no longer represent a wave length Jet us replace it by 1. We then have

M\
7 { 9
Flz) = )O ’1“ (& sin (m 2711- fc) + by, cos (m TW :z:)] [50]
=1 ]

in which

\ 2 ? 2
Oy, = f F(z) sin ('m kil x) dz [51]
:"\:. Z 1] E

\ b .
O\ 2 o
A\ by = - fF('v) dz [5ia)
..\". v E 0

“\J
4 2 [ : ]
h b = 7 f Fx) cos (m g;I :z:) dx [62]
(]

Substitntion in Eq. 50 yiekis

] = ]
F{x) = Il— f Fle) de + ? E [sin (mz—;- x) f Fi{x)sin (m g;f 's) dx
o m=1 1}
i
+ cos (m 2—: :c)f F{x) cos (m 277r :n) d:c] (53]
D -
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Since definite integrals are functions of their limits, we may, in order to
avoitd confusion, replace the symbol z where found within such an inte-
gral by sormne other symbol, say 4. Then we may write

! 2 1 T -
F(;,;):i—‘/n-ﬂp)dnﬁ-z—Z]:[ F(p)&iﬂ(m%”)sin(m%x)dp
m=1

+ [ IF(;L) cos (m 2771- #) Cos (m 2%7 x) d#] [54]

Inspection shows the possibility of replacing a combination of termg™\

2 2
such as cos (-m %r ,u) €08 (m TT :c) =+ sin (m 2TW ,u.) sin (m %ﬁ z):hy
. £\

coR [m ?;.— (o — ;zr)J- Henee we write (J}"\"’
' I : 9 t 2 M"\‘\f
Flz) = - f Py du+5 ) f F) cos [m TH x)] du [55]
! o Z m=1%10 \{‘
Let the summation be now changed so as to {&id from m = —= to

m = 4w, Since the cosines for negative mig'are equal o corresponding
ones for positive m’s, no trouble is experienecd. At the same time, the

&N 1 'm
multiplicr of the summation ehang‘eg‘;"tb’ﬂ-#lﬁﬂabthéyiofﬁmﬁ' () du
now fits into the summation, and e have 0

~ Y

Flx) = % [ng{dp\z cos ‘:mz—; (u — x)]

M= —"

“'Z =1 o 9 2

=1ﬁ':[F(p)d#Z—FCOS{m“I(F—$)1 [66]

x%ﬂ-": o Mm=—m ! ! -

y\l. 3

If now I iNIntreased without Jimit and m2x/[ is treated as a new

variable, p\Ray, with its differential dv equal to 2x/l, Fq. 56 may be
rewrittenas follows:

a \¥;

N [F(;r.) = 21T fnwm) dp[w cos vip — ) d"]ma [57]

Though no change in value for the integral oceurs when the order of
integration ig reversed, such reversal is found convenient and nceessary
In application. Thus reversed Eq. 57 becomes

[F(x) = %_ -/\mdv'/n‘mF(,u) cos #l(p — ) dp]MM” [58]
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Had we followed the procedure of certain other authors and developed
series for the ranges —7 < @ <7, —T/2<i<T, —A2 < x < N2,
instead of 0 < 6 < 27, 0 < ¢ < T, 0 <z < X, the relation obtaned in
place of Eq. 38 would have satisfied the range —w« < 8 < . Its
form, slightly different, is the following:

oo +e
40 =2 o [ s enta = ) [56]

- —w —w Lz <te

The right-hand member of Eq. 59 is known as Fourier’s integral, A is
more inclusive than Eq. 58, which it includes as a special caseN® In
making the transfer from one form to another, however, ong neieda to
note thut the portion of a function which is expanded iA “the range
0 < z <1 to vield Eq. 58 is different from that whu,hor% £Xpa]ld( ] in
the range —1/2 < @ < 1/2, and that therefore the F (@ (\l of Eq. 58 is not
the ¢(x) of Kq. §9.

Egs. 58 and 59 are found indispensable in the mlutlon of many prob-
lems of theoretical and practical physics, my()}}mg electricity, magnet-
isrn, heat flow, x-ray analysis, ete. To i]lu%fxa:ﬁe its use here seems out-
side the seope of the present work and will not be done.

11. Special Cycles Consisting of «a Positive and a Negative Loop.
The graphs of many fuﬂétidfﬁhhwl&bﬂﬂi Iropegetice show cyeles consist-
ing of a positive and a negative loop both of the same extent along the
independent variable axis. /Recause of certain characteristics, many of
thesc permit of smlphﬁecL fgteatmt,nt Four cases will be discussed.

Case I. The Arm})f the Positive Loop Equal to That of the Negalive
Loop. In this rasa ‘the term of the whole range sine-cosine scries involv-

ing b is zero'\T}ub is evident from Fq. 19, for the integral / fiy de

reprpsenfr%\the area enclosed between the loops and the #-axis; and, if
this ark® 18 nil, the cocfficicnt is likewise zero. The loops need not be
of equal lengths in this instance,

\ Cuse II. Positive Loop Asymmetrie; Negative Loop a Displaced Tmage
of the Positive Loop. An illustration is given in Fig. 5 at 4. Itisa eycle
that is encountered frequently in electrical engineering. Evidently b
is zero. For the further evaluation of coefficients, we have the condition
that f(# + =) shall equal —~f(¢). This is met by both sine and cosine
terms when only odd values of m are used since

[sin mé = —sin M8 + 7)]n oaa [60]

feos mé = —cosm(® + ) ]p oaa [61]
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Even values ef m do not yield the change of sign. The type of sericg
that satisfics Fig. 54 s therefore the whole range sine-cosine series
containing odd terms only, thus

y=f6) = a1 sin 8 4 a3 8 36 + a5 sin 58 + - - -
+ b cosf+ bycos30 .. [62]

In obtaining values for the coefficients it is evidently not necessary to
integrate over more than one loop. In each instance the integral far
the whole range will be just twice that for one loop.

/\f\ : yom

N
¢\
o\ %
N

17N
T {2g 0 T 2T
g O\ 8
(4) B ©

Fia, 5. Three special eyeles with graphs, ﬁWpM%?%ﬁﬁé@pgélgi}g and a single

negative loap of equal extent alofigithe axis of the independent variable.

Case 11T, Positive Loqp’"ﬁ‘symmem'c ; Negalive Loop Possesses Point
Symmetry with Respect lashe Positive Loop. An illustration is given in
Fig. 5B. This type af'\wave may be met in various fields, in particular
in sonics, Fhe leITéﬁén 15 odd. An evident condition which must be
lulfilled by the geries is that f(r — A) shall equal —f(z 4+ A). This is
fulfilled by 4{{"$ihe terms whether m is odd or even. All cosine terms
fail, T]um"\\ Y

S sin (mr — A) = —sin (mr + A) [63]
while,| »)

N cos (mr — A) = cos (mm + A) [64]

It follows that Fig. 58 will be described satisfactorily by a regular
half-range sine series.

Case IV. Positive Loop Symmetrical; Negative Loop P ossesses Pm‘.m
Symmetry with Respect to the Positive Loop. An illustration s given in
Fig. 5. Thig eyele oceurs frequently. Obviously in this case, as In
fase IT1, the function is odd and a hali-range sine series suffices, There
B an added condition, however. Ilere f(x/2 + 4A) equals f(r/2 — A).
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This condition is fulfilied by sine terms only when m is odd. Thae series
then takes the form

y = (&) = o, 8in 6 + ag sin 3¢ + assin 50 + - - - [65]

While integrating to obtain values for the coefficients, one necds only
to integrate over onc-half of the first loop. DBecause of symmetry the
integral for the whole loop is twiee that for the half.

In this case, were a shift of the origin made to the middle of a loop, the
series required would be a half-range cosine scries with odd termos only
present. The even terms are eliminated by the condition of poinkiyin-
metry demanded for § = =/2 in the shifted coordinate systeud, )

12, Tabular Integration Method of Obtaining Series Cdefficients.
As the function to be used in illustrating & procedurc suitable for such
determinations, we make use of an oseillogram ' (Tig. ) which is rather
similar to the instantancous power oscillogram of. e, 1. The evele in-
volved is of the type described under case II\UE. the preceding scetion,
Our tagk ig that of determining coefficients a{v.\z-},, ag, 0 by By, by, o0
Kerchner and Corcoran in the refevenée tited give vulues for the in-
stantancous eurrent at 5° intervals be‘t-}vé(tn 0° and 180° beginuning at
0°. To these we shall apply Eqgs. k%49, and 20, using a tabular trape-
zoidal method of integihtisr REMMSEATYPS& hapter IV, rather than
the slightly different procedurdiisced by the authors. How it is carried
out is shown in Table I, whitre valucs have been determined for a1, by,
@z, and bz, Similar p;-(j(*,c\,durc will vield values for the ¢'s and ¥'s of
higher harmonics. As\‘tzibula.ted, one sees that the same numetric oveurs
frequently as a siflg, or a cosine factor. 1If a glide rule or computing
machine is ussddn making caleulations, much time may be saved by
setting the paleor computing machine so that successive multiplications
involving(®ych a numeric can be carried through conveniently.

Collgtted values for the desired series arc given in Tuble TL. Because
of theslightly different procedure mentioned, the constants for the funda-
) .n}eﬁtal or first harmonic and for the third harmonic differ slightly from
those obtained by Kerchner and Coorcoran.  Values for the fifth and the
seventh harmonies, however, are those which they obtained.

In cvaluating the e,’s for a series of the form of Flq. 6, oue must choose,
in each case, between two supplementary angles with the same value of
tan e,. Which angle to take depends on the signs of the cocfficients
@y and by, Referring to Eqs. 7 and 8, it is seen that they may be solved
simultaneously for a,, and b, in terms of 4,, and e, to yicld o, = 4n
€08 &, and by = Ay 8in e,. With 4, as defined by Eq. 7, taken a8

! Kerchoer, R. M., and Coreoran, G. ¥., op. cit., p.139.
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essentially positive, it follows that cos ¢, has the same sign as a,, and
that sin e, has the same sign as b,,.  With this understanding, the ranges
for various initial phase angles e, that correspond to various comhbina-
tions of positive and negative signs for a,, and b,, are those shown in

Current
S
=

7

D Phase Angle

Fre. 8. An (::-sn:jQ{grltm showing instantaneous current s & Tunction of phase angle
for unc—ha}fzpf a cyele. The ares between the trace and the phase angle axis has
been subwlivided inlo 36 portions by vertical lines drawn at § degree intervals.
(Kemh\h;—;r, R. H., und Coreoran, G. F., Alternating Currenis, p. 139, New York.
Jobn Wiley and Sous, Ine., 1938.)

Table ITI. These relations arc also shown graphically in Iig. 7 where
%, and b,, are treated as z and y components of & vector. As is evident,
& positive e, for the range 7 < &, < 27 may be treated as a negative
tm With 4 corresponding value between 0 and .

As a result of the analysis summarized in Table T1, and the interpre-
tations of Table 11T and F ig. 7, we may now write the series to and in-
cluding the 7th harmonic in the two following equivalent forms, from
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which the names of the units accompanying the constants have been
omitted,
¥ =823sgin8 — 22.1 cos 6 — 0.90 sin 3¢ 4 26.0 cos 38
- 5,38 sin 60 — 3.65 cos 50 -+ 2.01 sin 70 — 1.29 cos 76 [66]
¥ = 85.1sin (# — 15.1°) 4 26.0 sin (38 + 92°)
+ 6.3 sin (58 — 146°) 4+ 2.4 sin (78 — 33%)  [67]

O\
TABLE II
N ¢
CotircreD Varmes ror THE CONSIANTS oF Srrims oF TiE Tyre orF RogN\PRrD 6
10 Rerresgnt THE InsraNTisNEOUS CURRENT Oscliuockam or Fla. Q,}D_»\_-IA POR
Wnicr, TAREN FROM MEASTREMENTS BY KERCENBR AND (}03001;1\4{}1‘ Arp (GIvex
s Tanue 1 AN 3

z '\..
Valuey for the fifth and sovenih harmonies are those which fhbv computed. Tnits
for tm, bm, and \/am2 + byt are arbitm,r);.

D
Clon- D t Quadrant b
Har- N\ stant| @n o ‘“qzk?mj for » mﬁf
monie Voamt :l-"b;.;"!'l taz . Positive or e *
wwwl.dbraalibrary org. inh En
Fundamental | 82.3 |-22.1,4\ 85.1 ~ 0. 269 #h — 15.1°
3rd - 0.90 | 260N 26.0 |-28.9 2nd + 92.0°
5th — 5.38 \Q‘.% 6.3 |+ 0670 3d | ~145.9°
Tth 2.014[— N\ 20 2.4 — 0.640 | 4th — 32.6°
NG
:t\.v )
N\ TABLE TIII

. o

Snnwmq \QL\NECTI()N BETWEEN TOE BICNS OF @y AND Py, OF THE WHOLE RANGE

1 bl A . - 1

Bixe COSINE Suriss oF kig. 1 aND tHE RANGE OF HE CORRESPONDING ¢, CON-
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Inspection of Fq. 67 shows that the contribution of each harmonie
has decreased with the increase in its order, It is probable that the con-
tributions of the harmonics of still higher orders are negligible but such
is not certain without further fests, one of which consists in finding the
differences between the measured y's and the computed y's, using Eq.
66 or Eq. 67.

With regard to accuracy, it is easily scen that as the order of the har-
monie inereases, the uncertainty with respect to the magnitudes of the

i N A\ @y
: .:\yw'w.dbraulibrary,org,jn

Fundamental ~ ) Third Harmenic

Fie. 7. Showing a vector grap}\l’"@eful in determining the range of en of Eg. 6 and
hence in determining a phigaatigle when its tangent is known. The graphs repre-
sent, eonditions for the fupdamental and the third harmonic shown in Tabie 1I.

amplitudes also inf;ﬁ%wies. Referring fo the computations for the first

and third harpadfifes as shown in Table I, it is seen that the range of ¢
for which a,givén g is assumed to be an avcrage is three thmes as great
for the thii;[:i as for the first harmonic. Tor a higher harmonic the range
is correspondingly greater, with an uncertainty that is also correspond-
ingh\’ greater.

Certain time-saving, tabular methods! have been developed for the
determination of the coefficients of a Fourier scries. Reference to such
shortened methods is recommended for one who is limited by circum-

ZFa-nces to the tabular method and has several determinations ahead of
im,

" Lipka, Joseph, (raphical and Mechanical Compulation, Chap. VII, New York,
Jobn Wiley & Sons, Tne., 1918. . .
Running, T, K., Empirical Formulas, p. 74, New York, John Wiley & Sons, 1917.
H. 0. Taylor, Phys. Rev., 8, 308 (1915).
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13, The Rolling Sphere Harmonic Analyzer. The discussion here is
based on a description of the construction and operation of an Henrici !
analyzer by D. C. Miller? In theory it is a deviee for the mechanical
determinations of areas corresponding to the various Integrals

2x
O = 1 f(8) sin mé do [17]
TS
and
1 D
by, = — J(8) eos mo d8 4207
TSy

. . . . . . # 3 \\ .
Obviously, given a certain f(§) (Fig. 84), it is possible to plo?,"\-'aru}us
curves (Fig. 8C) corresponding to the various integrands.zchéscri}J(sd by

<
2 &
m\‘\.
A
AY;
1 fO a3
—
S F
N i K
\ ! L
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”~ X \ ,,-s\ : \\
FOL wwfr dbraohby- #f org ! N
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Fia. 8. G«ra,\pﬁus iHustrating graphical harmenic analysis, using ordinary planimelers.
A, Gf-aph of function; B, graph of sine factor of the thircl_harmom';; C, graph of
,,f,{?)}m 3# a= a Tunction of 4,
4
Eqs. 17 and 20 and then to determine areas with the aid of an ordinary
pla.nimeter. Such curve plotting, one for each coeflicient, would be very
time consuming, and a machine to be of value must eliminate much of
such procedure. This the Henrici instrument does.
Integration of the right-hand terms of Egs. 17 and 20 by the “inte-
gration-by-parts” method, replacing f(6) by y, vields
t Henriel, ()., Phil Mag., 38, 110 (1804),
* Milier, D. C., J. Franklin Inst., 182, 285 (1916),
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1 P 1 =2
Oy = [— — - Y o8 mﬁ} + — f cos mb dy [68]
M i MT W g=n ‘
and
1 2w 1 tf=2w
By = [__ y sin mg] - f sin mé dy [69]
mw 0 M S gy

The first member on the right of Kq. 69 is obviously equal to zero, Tf
now, as conditions precedent to the use of the Henriel instrument, con-
ditions are g0 determined that

[y = 7(6) = Oly—g 0]

9 N
-
AN

the first member on the right of Eq. 68 also becomes zero. HE@s."68 and
(9 then become ' FAY

3

I 1 =2 o\
U = —f cosmpdy ¢ [71]
) mT o =0 <

1 =27 p \"
by = — —— sinahddy [72]
e =0 X ) 3

and

These are the basic equations governing +he construction of Henriei’s

instrument. Interestingly the sing (eoetficient: how Oflz_%nj‘%am 4 cosine

integral and vice versa. .

-

S
#
A

o
R )
G
Geenslan
i
e

F1e. 9. Photograph of an Henrict harmonic snalyzer with & eurve in position to be
analvzed. (Miller, D. C., J. Fronklin Inst., 182, 285, 1916.)

Fig. 9 shows a photograph of a completed instrument with a curve
to be analyzed in position. This curve must be plotted so that a cell'tam
linear distunce, s to b in the figure, shall represent the angle 27 radians.
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If there are discontinuities, lines perpendicular to the f-axis are drawn
to connect the branches at the point of discontinuity. In operation this
curve is traced by the stylus shown with its point at s. During the
tracing, the wheels r1, 73, r3 roll backward and forward, carrying the
superstructure. Two of these wheels v and r; have a comnon axle
shaft that carries five other wheels which, however, do not 1ouch the
paper on which the graph has been plotted.  Euach of these five wheels,
of which two arc shown in Fig. 10, supports a glass sphere which is

Fiq, 10. Ph?tograimh of a pomo\l of an Henrici harmonic analyzer showing velation
of rolling spheres t-\&(}'adjaoeut integrutors. (Miller, D, ', Tdem.)

rotated by it. ’lth.ejr'rotation d¢ about an axls (the ¢-axis) parallel 1o
the line sb of thefgraph of Fig. 9 corresponding to a change dy on the
graph is strietly proportional to dy. Obviously in accord with ligs. 71
and 72, ip\@ Still necessary to multiply each dy by its appropriate cos mé
ot sin mh And to sum up such products. For this purpose, as shown in
jFig: Q(}."zmd in plan in Fig. 11, two rolling sphere integrators are kept
;n*c;(m’tact with each sphere. These integrators in contact with any one
sphere are oricnted at right angles to each other and contact the sphere
at points separated by 90°. )

As the stylus (Fig. 9) is moved along the curve, g vertical shaft moves
lengthwise of the superstructure and with it a wire is moved which passes
around the pulleys at the tops of the frameworks about the glasy spheres.
The diameters of these pulleys vary as 1: 14 : 14 .14 : 1% and in size
are such that, with the passage of the stylus from s to b, they in turn
make just 1, 2, 3, 4, and 5 rotations. With the stylus at s the frame-
works about all of the spheres are set for the position m§ = 0. Then,
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with a slight movement of the stylus, there will be equal slight rotations
d¢ of all spheres about the ¢-axis proportional to the dy of the stylus
motion. The integrators for the gine terms s will automatically weight
this ¢ aceording to cos 0° or unity in conformity with Eq. 71 and those
for the cosine terms ¢ will similarly weight the do according to sin 0° or
gero in conformity with Eq. 72. With further motion of the stylus,
however, the frameworks carrying the integrators are shifted to pradu-
ally varying orientations about the vertical axes through the spheres,
The positions for m8 = 0° and m# = 30° are shown in Fig. 11, ~

Rt

* 1\.\:\:! w.dbraulib ragy.ops.in

mf=0°

Fie. 11. Diagram showing the positihs of the rolling sphere integrators in contact
with the mth sphere for positidiig corresponding to m# = 27 -+ 0° and mg = Inar
+ 307 Tntegrator § yieldsith}s sine component, integrator ' the cosine component,
of the mth harmonie. \'\ o

As reflection will :show, with the passage of the stylus from s to b
(Fig. 9), the frantework about the mth sphere will make complete
rotations andthe s and the ¢ integrators will give indications propor-
tional to %a\nd b, as given in Bgs. 71 and 72, With dimensiong prop-
erly chadert proportionality factors, except for 1/m, may be made unity.

In'{}%é", the changes in the integrator rgad'mgs Wltf_l shift of the stylus
{m}'yé to b (Fig. 9) yicld the first five sine fmd cosine coefficients, not
bovhowever. A set of the 6th to 10th cocflicients, ete., ean be obtained
with the aid of other sets of pulleys at the tops of the frameworkg carry-
ing the integrators. In anticipation of such changes double pulleys are
provided as shown in Fig. 10. Compound pulleys with larger diameters
dy and dy to yield 4 and 5 rotations per change of 2rinfhave also gmailer
diameters dg and dy, to yield 9 and 10 rotations for the same change in 4.

Henrici’s instrument fails to yield a value for b/2. Ordinarily for
cases treated with an analyzer, this term is of little §1gniﬁcance. Should
need be felt for obtaining it, one may use an owdnary planimete; to
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determine the area hetween the curve and the base line confaining
the points s and & (Fig. 9) and then divide this area by 27 radians.
By comparing the analyses of known mathematical funetions obtained
mathematically with those obtained by his Henriei analyzor, Millor
demonstrated that the analyzer possessed “‘an inherent accuracy much
greater than can be taken advantage of in graphic work.” TIe stated
that “The results are always accurate to a fraction of the width of the
line representing the curve, and this precision is maintained uniformly
for all the components, even to the thirtieth.” A~
This judgment was based in part on the reconstruetions of the orifinal
curves which were obtained with the aid of a harmonic synthenizer!
which he likewise deseribed. O
Miller has also compared the speed with which resul§s~:ma}f Le ob-
tained, once data in the form of the required curve are, g@veén, with those
for obtaining results by tabular methods presumably somewhat like
that illustrated above. Of the results of three abulyses of the same
curve, the sound wave for an organ pipe, he statesthat the time required
for the first ten harmonies by this methodwas 13 minutes, that the
time required by the tabular method inyolving complete numerical re-
duetion from 36 ordinates was 10 howgy, and that the time requirced by
another tabular method with Ig pared schedule which used only 18
measured ordinates and"yiel¢ (‘%-%’l _'1 £ iarmonics was 3 hours. Evi-
dently, where much work is tg be*done in analyzing curves, a harmonic
analyzer 18 a necessary instritacnt.
14, Other MechanicaKAﬁalyzers. Without doubt analyzers of the
Henrici type are &mor;g,\bhe best obtainable, Among purcly mechanieal
- mstruments, they represent the best.  As other instruments in eommon
use, we have the\femmon vibrating reed frequency indieator of clec-
trieal power stations, and the Chubb? polar analyzer (Fig. 12) which
is found ir}\Qieétrical laboratorics and power stations. The reed instru-
ment rqqpi}es a sustained repetition of the f(¢) but no manual or other
graphing “of it. It can, however, only give indications of harmonics
présent and of their relative amplitudes. Tt cannot, at least as con-
stricted at present, show phase relations. The Chubb polar instrument
requires a graph on polar paper, which is mounted in use on a circular
gear-driven table. Kach sine and cosine term requires a separate ad-
justment of gears. There are two motions, one of the table forward and
back along a straight track, the other a rotation of the table with m
cyelic frips on the straight track for each rotalion. The tracer srm
which moves only perpendieular to the straight track has the tracer

! Miller, D. C., J. Franklin Inst., 181, 51 and 285 (1916).
2 Chubb, L. W., Bler. J., 11, 91 (1914).
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point of an ordinary polar planimeter inserted in a hole at one end.
The area swept out by this tracer point during a eycle, in any particular
instance, 18 proportional to the corresponding a,, or b,,. From the serics
of values obtained, an analysis for 7(8) similar to that represented in
Iig. 1 is obtained.

Fia. 12. A diagram showing i\}késﬁﬁuciples of operation of the Chubb polar harmoniec
\ analyzer.

15. Nonmechadical Harmonic Analyzers. Although the Henrici
analyzer method”saves much time in comparison with the st-raight
tabular meghod, it is still time consuming. Other methods for speeific
purposes'rr:fray be much superior through not requiring the plotting of a
cun-‘,es@i*\by virtue of employing automatic integrating devices. Gt?n.ep
allj?xha%rever, these improvements have been at the expense of precision
in the analyses obtained. Where, as is often true, time and expense are
important factors, some one of these methods may be more desirable. ‘

In a scnse these methods are also mechanical because of the mecham-
eal devices employed, but they are here classed as nonmechanicul b.c-
cause their important featurcs depend upon photoelectrie, clectronic,
electromagnetic, ete., cffeets.

The hasic theories for all analyzers start with Tigs. 17 and 20 and are
necessarily much alike. Tt is necessary in all instances to multiply in
effect an _}'(9) by a cos mfé and by a sin m@ where ordinarily a separate
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eperation must be performed for each value chosen for m and sometimes
for each cosine or sine multiplication. Further, phase relutions must
be controllable with precision.

A simple harmonic analyzer dependent on photoelectric and elec-
tronic effects was patented in 1933 by Marrison, of the Bell Telephone

A D

. A\ :
Fra. 13. A diagram to show the principles of operation of #1€ Marrison photoclectric
Larmonic analyzer for the case where only the amplitudeg of the harmonics are lo

be determined. ¢ \\ /

Laboratories. The main features of th¢\nethod are shown in Tig. 13.
The funetion f{6) is conveniently laid gutn polar coordinates either by
the appropriate blackening of a % _%nsf}a.rent cireular plate dise or by
cutting each dise to forfh"a” t%]%ﬁlﬁ%erggysﬁg&ﬁnin ¥ig. 14. The dotted
line is the axis of zero amplitide, Whichever way prepared, the f(8)
disc is mounted on & motériwhose speed of operation may be varied
¢ \.eonveniently and precisely as desired. Thus
mounted as shown at ¢ in Fig. 13, it is
rotated in the plane of the image of a line
source of light A, formed by a simple
convex lens, B. Back of this image plane,
the light beam modified by the rotating
J(8) enters a photoelectric cell, D, the out-
put current of which passes to an amplifier,
J E. The output of E in turn passes to a

plor coordinates for use filter, F, seloctive at a fixed frequency, and

with the Marrison har- . .

monic analyzer, t'_?' a current meter, ¢, of the desired sensi-

tivity,

Let the characteriztio frequency of the selective filter be arbitrarily
fixed at 100 cycles/sec. In accord with this choiee, the procedure for an
harmonic analysis follows. The motor 3 is driven first at a speed of
100 rps and the indication of meter & is read. Obviously, with all fre-
quencies but 100 per second eliminated by F, the reading of & is a meas-

! Marrison, W. A., U. 8. Patent 1,901,400,

Fm\: 1>}. An f(6) set up in



NONMECHANICAL HARMONIC ANALYZERS 137

ure of the amplitude of the first harmonic or fundamental of fe.
Next the speed of M is reduced to 50 rps and the indication of @ is read
once morc. At this speed a component of f(§) whose frequency is
twice that of the fundamental will be repeated 100 times per second in
the output of the photoelectric cell D and will have its amplitude
recorded at 7. Bimilarly the amplitudes of suceeeding harmonics may
be obtalned by operating the motor at speeds of 1g, 14, 1<, ete., of -
100 rps. Omnee f(6) has been properly transferred to the motor-driven
disc, the time required for the amplitude analysis is very bricf. Q

o) ’ ’
Fis, 15. A dingram to show the principles ofloperation of the Marrisor photoelectric
harmonic analyzer for the case whersddiplitteaulibirphysergliftions are both
determined. S .

Unfortunately the analysis j(lst deseribed gives no indications of phase
relations, For this Matrison proposes, as shown in Fig. 15, the sub-
stitution of an electrighlly” driven tuning fork—with mirror I attached,
a light beam J, and(, Moving photographic film X to replace the filter
F and the meter{(}» shown in Fig. 13. Obviously a harmonic being
analyzed will belshown drawn out as a sine curve with an amplitude
DmDOrt-ionailibd that of the harmonic. For the phase determination, a
Htl‘&ight—liﬁc trace on the same moving film is produced by light re-
fleetedy fiom a mirror which is stationary except for a small jog produced
Onl’:e\(z}if:h rotation of the motor by an appropriate contact mechanism.
Fig. 16 is given by Marrison as the analysis of the f(#) of Fig. 14. Ob-
viously the three components agree precisely in their phases for one
particular value of # and differ in amplitudes.

Another optical analyzer using photoelectric effects for its integra-
tions has been construeted by Wente ! and deseribed by Montgomery.”
In the instrument described, the f(6) is represented by a variable area
record or by a variable density record such as are found on photographic

! Wente, E. C., U, 8. Palent No. 2,008,326.
* Montgomery, H. C., Bell System Tech. J., 17, 406 (1938),
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filng for sound reproduction, while the cos m# and the sin m# factors
arc represented by similar records of the variable density type only.
The f{8) record may vary from 1/16 inch to 5/16 inch in length and must
not he higher than long. The sine and cosine factor reeords are about
1 inch by 2 inches. In operation the f{(6) and a cosine or a sine record

AN .\

..,\""

' /] \

l:\\’
Fia. 16. The graphical analysissofihe f(6) of Fig. 14,
sccording to MarriBon,

are mounted in an optig\;a.}\gm;ﬁgmﬁ!&yﬂﬁ and light from an inecan-
descent lamp is passed through'e & colleeting photoelectric cell whose
response is an integrated prgduct of the transmittances of the two rec-
otds. DBy successive subsité’r?tations of the various sine and cosine records
other corresponding phdtoglectric responses are ohtained. Certain cot-
rections must necessarily be taken into account. Although negative

A\

SEUHHE

. suUrce
\¥
\ J A B
Fie. 17. A diagram showing the aptical arrangements for an analysis using Wente’s

optical harmenic analyzer. (Monigomery, H. C., Bell System Tech, J., 17, 406,
1938.)

values for f(8), eos mf and sin m¢ will always oceur, negative values for
light flux are not possible. This difficulty is eliminated by combining
the variable light flux with a constant flux of appropriate magnitude,
so that the light flux may be positive at all points of passage through
the system, Also 1009, transmission as is indicated by sin m# for m8
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equal o 907 is an evident physical impossibility, and a modulating
factor is necessary on this account.

An analysis made with Wente’s instrument when compared with one
made with an Henriel instrument showed certain diserepancies in magni-
tude of amplitudes. (See Fig. 18, which shows comparative analysis of
the sound “ou” as in out.) On the basis of time of operation, however,
this methed proved greatly superior. Thirty harmonies using an Hen-
riet insirument s said to require from five to six hours, whereas the same
resulls are oblainable by the optical instrument in about 114 minutegs,

2 ~
Optical Analysis 2\ \
7'\
1j- « M
| ‘ 1
s 1 e &1 I I|||| h]nll“lll[
3 NS
% i
Henrici Analysis \
5 2r \
& \$
1+ | A L
ol l 1 1 '}'\-':\.'\’[‘-'\-" bl}la Il. : 11‘M4 l‘ﬂlll{|||hﬂ__
70 100 200 abo 200 sh0 1000 2000 3000

Frequéngy in Cycles per Second

Fuw. 18, Comparative ana.]ysqa”o?‘the sound ou in out as determined by Henrici
wechanical and Wenle o;’)@;{l’ harmoenic analyveers. (Montgomery, H. C., Bell
System Tech. J., 17, 406,93 )

A combined optital’and electronie analyzer is the cathode-ray instru-
ment devised bx('v‘" (). Johnson ! of the Westinghouse Illectric & Ma;r_m-
facturing CoN\Mn operation, the waveform to be analyzed and the sine
and cosing\factors are supplied electrically, the former from the source
under atvudy, the latter from a good guality, variable frequeney oseil-
latdt. \'The function £(8) is supplied to onc pair of plates of a catho@e-
ray ofcillograph. The cos m# or the sin mf factor in effect is supplied
to the other pair. Properly adjusted, the trace on the face of the
cathode-ray tube is a Lissajous figure whose complexity (Fig. 19) reveals
visually which particular harmonic is under consideration. Irom the
aroas enclosed within two traces, one can determine the amplitude of
a harmonic and its phase with regard to the fundamental. When deter-
mining these areas, one must recognize that portions traced co.untep
clockwise are positive and that those traced oppesitely are negative, or

t Johnson, V. O., Trans. Am. Inst. Elec. Engrs., 60, 1032 {1041).
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viee versa. 'The results obtained by this method are said to check well
with the tabular method.

A more definitely electronic deviee is that manufactured by the Gen-
eral Radio Co. It is described as a heterodyne tvpe of vacuum-tube

2\

NUALVERY

A\ AR AN

Fra. 19. A pair of Liseajous figures for determiﬁin’g a seventh harmonic as obtained
by V. 0. Johnson, using his cathoderay method. (Johnson, V. O., Trans. Am.

Inst. Elec. Engrs., 60, 1032, 1981 dbraulibrary org in

voltmeter (Fig. 20). The manuffeturer states, “The output of the local
oscillator and the whole of &he’ complex waveform to be examined are
fed to u balanced modylater where their combination produces both the
sum and the differenge fréquencies, or side bands, in the output. Lbe
original of the complex waveform is not passed by the modulator
intermediate-frequeniey output transformer, and the local carrier fre-
quency is Sg}{é}e%sed in the output because of the two-tube balanced

R %r:p%ﬂulﬁplier
\(hmegahm sienuator)
- V-1
G |

Inpiit voltage {{

cantalning Sompenents {3
Tetween O & 18.000 =

50,000 eycie -
v *flat top™ lilter 2 Stage amplifier
4 13tale swilth

. C V.5
I H = iy
1=
il N
Power frequancy L) Sidebands (P4 0) and (P—Q) Galn Uppar sidebands
carrier suppressed

for calibration (50,000 cycles) an'y

Callbrated heterodyning estiltat Nnte: Amount of carfler (P,

wyeles supplying carrer {F) a[gﬁeq,:;m?; Towee sideband (F— 0,0 and
of 50,000 cyctes Minus Irequency F4 20, P30, cto. negliylbis
of companent of "¢" under analysis here

Tiq, 20. Simplified disgram of the General Radio Co. electronie harmonic analyzer.

medulator employed. The 50-kilocyele component of the upper side
band, proportional to the voltage of that frequency present in the orig-
inal wave to which the main dial is set, is selected and amplificd by the
intermediate stages.” The current thus amplified is read in a meter.
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An analysis requires dial adjustments one by one to the harmonic fre-
quencies in the waveform under cxamination, adjustment with each
new component to a standard sensitivity for the fundamental, and re-
cording of the meter readings.  Only component frequencies and their
amplitudes are obtained. No phase velations can be dotermined. The
voltage uncertainty is said to he within £5%, on all ranges, This method
i particularly suitable where the complex waveform is available as a
eontinuously repeated emf in an clectrieal cireuit, The analysis is then
but a matter of a few minufes, QY

Many other harmonic analyzers are described in the literature.la

16. Bettering the Approxzimation Involved When Only a Finite Nuim-
ber of Terms of a Fourier Series Are Used. In harmonie analyses, such
as that carried out above, one makes determinations of eoeficients as
though coeflicients for an infinite number of terms wege to be used
when applications were Lo be made, and then in facf§tops with a finite,
useally rather small, number of torms. A question naturally arises.
Considering thal only a few terms are 1o be usédy would not somewhat
changed values for the computed (‘tO(:Iﬂcicnt;S’}t the data better? The
answer involving least-squares procedure {(Chap. XI) states that, given
that Lhe series is to be a harmonie sori.{:s'm ren though possessing a finite
numher of terms, the equation yl(‘ld,tn}g;‘rcl‘jﬁ -helib ik has gxactly the co-
efficients given by the stundard Founer analysis. Iiven if but one sine
or cosine torm is to be used ig' 1epres‘enhng a given function, the best
coefficient for that term 1‘« Llﬁt specified by Fourier analysis. To illus-
trate, il onc should attvm@t 1o represent the instantaneous power curve
of I'ig. 6 by a single térm such as a5 sin 58, the best value for as would
be —5.38, the best{éguation, should both sin 5¢ and cos 56 be deter-
mined, would boy y = 6.3 sin (50 — 146°) [68]

o~
7\¥

Ob\-'iously,'ségf-l“'igonometric- series, containing & finite number of terms
whose cedfficients have been obtained by the Fourier method, can be
bottf*rcd\only by increasing the number of terms.

1 Summary Tt is shown in this chapter that any cyelic function of
an independent variable which iz finite, single valued, and possesses
only a finite number of finite discontinuities, may be represented by an
infinite trigonometric series known as a Fourter scries. It has been
shown that these series are always convergent. Series of this type
when integrated term by term are always convergent, though it cannot
be said gencrally that the scries obtained by differentiation will also
(’f-OIlV(]l'ge.

1Hall, Harry H., J. Acoustics Soc. Am., 8, 257 (1838). A general discussion of
various types of analyrers s given.
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With the angle ¢ as the independent variable and 0 < 8 < 2m s the
range, we have ag the most general of Fourier series the whole range
sine-cosine series

y=f@) =_— —I— Z (@ $in M + by, COS B) m

wm=1

Values for the coefficients are given by

(N A

4y = — f y sin mf df (A7)
T n LN
1 2 r:\"\.

by = f y ds O T
o 1] ,\,"‘

and 7

1 2 . M'\\‘

b, = - f ycosmi do ) {20]
w 0

Eq 1 with coefficients cvaluated may be oclﬁnged fo a form which
is generally more usefu! for practical purpogea namecly

y=10) =2+ Z;Amﬂn (mf + en)

ary Ol.g].l'l

bg T
' g {\Z A, cos (mﬂ + e — é) 6]

m=1
where N\
.:~ moo \/_(25”32 + bmz [7]
and P\ '
> b
Y & = tan™! s {81
A vt 1o

W\
Stlll anothm form, containing the imaginary 4, useful in theoretical
}\hysws, to which Eq. 1 may be converted is

y=f6) = + Z [ — Gy)e™ + (b + dam)e ] [11]

There are two hali-range series. With point symmetry for the cyclical
funetion about points on the g-axis at 8 = 0, =, 2w, ete., the cocfficients
of the cosine terms of Eq. 1 including by become zero and the sc ries
reduces to the half-range sine scrics

y=hHif) = Z aty, 80 7120 [29]

m=1
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wherc

n = 2 f rfl(e) sin m8 do [30]
™ Jo

With linc symmetry for the cyelical functions about lines perpendicular
to the f-axis at 8 = 0, m, 2, ete., the cocllicients of the sine terms of
Eq. 1 become zero and the scrics reduces to the half-range cosine serics

Bo C
— = 1
y=rl=,+ ;ﬁm cos mé [BL
of which y O\
== f fo(8) df O [32]
T 0 /’s:'
and ,‘ 3
o\
f f2(8) cos mo db ) [33]
Serics representing y = f{8) may be tr ansfu{h{e\d at once into series

2
representing ¥ = f(2— 5) or y = f(-% :r) Bf which T is a period of
vibration and A a wavelength, by qub%tttu’tmg for §, (2r/T)t in one casc
and (2r/M)x in the other case, R Qi dbraulibrary org.in
Thus for the former case conespondmg, to Eqs. 1, 17, 19, 20, 29, 30,
31, 32, and 33 we have O

s (o ()
y = f(T )=§..,z+i:m=1(_1msm(mfpt + b’ vos mTt [42]

N/
A :..: T 2 -
\E'm = 2 7 (2-—17 t) sin ( - ) di [43]}
N T Jo r T
Q&
N 2 (21:' ) [430]
N o = — dt aQ
~\’~\/ b'o T f ! T

b'm=—~f< )cos(m—)di [44]
¥ =N (22—1:- t) = Zam sin (mg;z) [45]

72 2
oy = % [ fi (2—; z) sin (m % i) et [46]
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2 8o | NN 2m .
y=fz(%t)=—+2;3mcc)8(m-g—1£> [47]

m=1

, 4 [T (27§ ) i

3"_?[) fo —Tt dt (47a]
, 4 TR (2 ) ( 7 ) "
B'm = T j; fo (?t cos\m - di [43]

Equations exaefly like Iigs. 42 to 48 arc obtained when ¢ in, lig, 1

.. 2 . . .
1s similarly replaced by (Y :r) , h and  replacing T and & ¢ N
P ‘\ :
Yor the case of a noneyelical funetion in which in effect thv wavelength
A extends from« = 0tox = =, the whole-range sine- cosmv “series trans-
forms into the Fourier integral ‘m.\‘

[F(:c) f iy f Fu) mwgu\ M) d#] S

Where the function extends indefinitely/4 m. both directions, we have

{F(@ f fg‘f'c‘pb%“‘ﬁi (&% d n]_ﬁm [59]

the right-hand member of w Inch 1s known as Fourier’s integral,

Four frequently occurrmg gpecial cycles consisting of a positive and
a negative loop yield mphﬁed series. Case 1. If the areas of the two
loops add up fo zexdythe by, Bo, or &y term is zero. Case IT. I the
positive loop is agynietric and the negative loop is a displuced image
of the positive, Iqop, the serics satisfying the function is a whole-range
gine-cosine semw contuining odd terms only, Case 11T, If the positive
loop is asymimctric and the negative loop possesses point symmaotry
with rex*;pv(*t %o the positive loop, the serics satislying the function is a
Nglia‘f half-range sine serics. Case IV. If the positive loop is sym-
mgtrmal and the negative loop posscsses point symimetry with respect
to the positive loop, the series satisf ying the function is a half-range
sine series containing odd terms only. Cosine series may he obtained
for Cases I1I and IV if, in cffect, the origin is shifted along the 8-axis
by /2.

The cocfficients for the serieg terms involve integrations. Often the
function to be integrated is not expressed mathematically and it is neces-
sary to resort to tabular or mcchanieal integrations. Tabular integra-
tions as illustrated in Table I are usually time consuming. Further, the
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coeffivients for the higher harmonies tend to become progressively more
and more uncertain.  Mechanical integration, however, once the fune-
tion s properly graphed, becomes a simple matter for a device such as
Hennied's rolling sphere harmonic analyzer. The time required is very
muclt shorter than for the tabular method.  Further, it vields cocfficients
for the higher harmonies with approximately the geeuracy atiained [or
the fundamental, Other devices generally less aceurate but. much more
rapid in operation are available,

TLeast-squares treatment shows that, if a finite number of terms of a
Fourier scrics only are to be used in representing a function, the <bhégh
values for the eoefficients are just those occurring in the solution.fo\r an
infinite serics. ™

s W

PROBLEMS ~\
N

1. Delermine the whole-range sine-cosine series to represent y 2N for the rangs

\.
0 <0< 2. N
2. Express the result of Problem 1 as a harmonie serieé\ihwhich relative phases
of the various harmonies arc shown. N,

3. Tn certain amplifieations of photoeleatric cur-rcnw’@' light besm is “chopped”
regularly to give an illumination E for the time interval 7'/2 and no llumination for
un enual lime interval and then an illumination B/®ueé more for the interval T/2, ete.
What is the harmonie series that represents the illimination? .

4, Whal s the harmonic series that MRWM?V%W&!’yiHHﬁiHhtion such as
deseribied in the preceding problem exce it the Mumination, and no illumination
intervals are 273 and 77/37 S

5. Find the half-range sine serfeg’for the broker line y = ¢ for the range 0 < § <
w2,y =% — 8 for the range 432 < 8 < 3x/2, and y = —2= + ¢ for the range
3 /2 < 8 < 2. &\J

6. Find the halfrange (}m\ﬁie series for the broken line ¥ = @ for the range
0 <8 <ai2y=n/2 fpr‘tvhe range 7/2 < # < 3r/2, snd y = 2« — @ for the range
3ri2 < 0 < 20 <l

7. Assuroing T.he\éqft.ion of Fig. 54 for the region 00 < # < 27 to consist of two
righi-angled trigngles with 30° as the smallest angle, compute and eompare the two
Tourier serie; };L)tdinf}d first when the origin is located as shown and second when the
origin is lon;;’él instead at § = .

8, Thel¥vele of the graph of displacement of & point on & vibrating siring shows
twnaelf Symmetrical loops which are symmetrical with respeet to a point on the time
ﬂ.XfS\ Measurements of displacement at the indiested phase angles give the following
values:

Phase angles in

degrens 5 15 25 a3 45 55 65 75 85
Displacements
in ¢m +0.041 =0.013 4-0.05¢ —0.017 —0.023 +-0.125 40.424 +0.771 +1.001

Graph the funetion and make a harmonic analvsis.
9. Compute the fifth harmonic for the data of Table I.
10. Find the half-range sine series to represent Fig. 2. Tollow the suggestion in the
text by assuming ¢ = /2.



CHAPTER VI
THE NORMAL FREQUENCY DISTRIBUTICN

1. Introduction. The hasie problem of every quantitative experiment
is that of dctermining directly or indirectly what we call the true
value” of a quantity--the period of a pendulum, the normalify of a
golution, ete. Strietly speaking, we can never measure the\:ﬁ‘ué value
of any quantity; we can obtzin only an a.pproxjmatiopf.’t]lereto. By
refining our methods of measurement, we can obtain/gloser and closer
approximations, but there is always a limit 1)eyond~}vhich refinements
have not or cannot be made, Tt is thus desirabledt know in any par-
ticular case just what relation the measured vahla-bears to the true value.
For obtaining this information, a knowlediic*of the law of frequency
distribution of measurcments is of greabpaluc.

Consider, for cxample, the measurgment of the prism angle, X, of a
60° prism on a speetrom AT T VIS Pan be read to 0.0017. It
will be found that, though all re}itliﬁgs are taken with equal ecare, sue-
cessive measurements will not Agree with one another. In a particular

4

case, assume values of K

600,320/ 60° 0,320

S0 318 319

) 317 322

R0 320 320

» 321 319

~.*\ 319 321

&3
&

AN
@u obtained. Given only this list of values, the question arises, what
valie shall be taken as being probably nearest to the true value, We
may tsikc the arithmetic mean, X = 32X /n; the geometric mean,
ng = \/XI X X5 X,; the root mean square mean, Xpus =
VX + X2+ XD/ the median, 3,, the middlemost value
when listed in order of magnitude; the mode, My, the value of X which
oceurs most frequently; or any one of a number of other such values.
Or, with perhaps some slight Justification, we might reason that since
in the past our measurements have usually been higher than those
146
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obtained by others, we should regard the smallest value as the best
approximation to the true valye.

Consider now the frequency distribution of the above scries of angle
measurements, showing how often, relatively, the various actual values
occur. The plot of Fig. 1 is a very convenient method of presenting an
over-all view of the spread of values and the general nature of the distri-
bution. It shows, among other things, that the reading 60° 0.320¢,
representing the angular interval 60° 0.83105 1o 60° (.3205', is obtained
four times; and, as indicated by the ratio of the area of the rectangle

N
o\

Number of Readings per Least Count

\\
2 \/
L g
I "
\ | | /™ \
I ! NN
] l i P b
60°0,316"  G.318 0.3200 .~ 0327

Angle Meagitgtipid braulibrary.org.in

Fia. 1. The frequency distribution for tvt‘éf{;e_ readings of & eertain prism angle.
The least count, the smallest a-mnunt‘f)jr which two measurements can vary and
still be deteeled as unequal, iz 0.00INE this case.

AN

centering at 60° 0.320° to\kﬁé";otal area under the curve, that the rela-

tive frequency of occunrenee of this reading is 14,

If the number of, fibasurements were increased indefinitely and the
lnast count made aﬂsn’mﬂ ag possible, the distribution curve would appear
less steplike apdi‘the limit would become smooth. This smooth curve
is the infinitesparent distribution of the measurements. The observed
set of twelvé, measurements may be thou;;rht of as a sample set from the
iﬂd‘?ﬁllitél};‘large number of measurements which make up the parcent
di:‘-%tﬂ@ﬁ-i(m. The cquation of the parent frequency distribution curve
18 referred to as the law governing the distribution of .the observed
measurements. Knowing this law, it is possible to arrive at a value
for the measured quantity which, except for instrumental errors and
Personal idiosyncrasies of the observer, we can justly declare to be the
most probable value. )

Depending on the assumptions made, several forms of frequency dis-
tribution laws have been obtained. Which is most likely to govern _thr:
distribution of proposed set of measurements is generally impossible

N\
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of prediction in advance. However, the normal distribution law, or, as
it iz sometimes ealled, the law of errors, scems to fit observed distribu-
tions in a great number of cases. Ifurther, the normal law is one of the
simplest, containing only one arbitrary constant; and many of the other
distribution laws reducc to the normal law under suitable imiting con-
ditions. Because of our desire for this simplicity, we often mistakenly
assume that the normal law governs all distributions of measurcments,
For many distributions, however, this assumption is chbviously im-
possible.

In this chapter we first present Hapen’s derivation of the nermal
distribution law and then cxplain its physical interpretation. The hro-
cedure of normalization of the law is carried through, and its signifidance
in describing probabilities is discussed. The precision indexes Gassociated
with the normal distribution arc then defined and cxplaiiedd! IMinally,
we derive the criterion of least squares, and show that fopd distribution
governed by the normal law, the mean is the most pi*(sbémb]e value,

2. Hagen’s Derivation of the Law of Normal Fréquency Distribution.
The normal law may be derived, using various gotwof basie assumptions,
The assumptions used by Hagen seem to.githulate physical conditions
moderately well and to permit of a simplé\derivation. The devivation
follows. Hagen assumed (1) ‘%})bat nf_]jgog's unavoidably enter in each of
serics of measurements of ‘g‘“&uaﬂ?f@t;'l(gjh)y‘t-?lla%lt?ach of these errors may
be thought of as being composedsdf & great number of very small equal
elementary crrors, and (3) ’t’hat’ In any measurcment, an elementary
error is as likely to enter infa ‘positive as in a negative sense.

To illustrate these 'sqfnﬁtiuns, we shall assume that the arithmetic
mean, 60° 0.3197’, of $he measurements reported above is the true value,
though we shall seeMhat this is not at all necessarily the case. The
deviation of the fl}bt reading from the assumed irue value—i.c., the
assumed error of the first reading—ther becomes 0.00037; that of the
second l‘ea@pg,', 0.0017'; ete. The frequency of oceurrence of these errors
for the glt:()up as a whele is shown in Fig. 2. The distribution 15 identical
1niiorm “with that given in Fig. 1. Fach error, in view of the assump-
tion§, s to be thought of as due to many minute errors which may be
associated with the temperatures of the various parts of the speclrom-
eter, irregularitics of instrumental calibration, uncertaintics of position
of the eye when reading, peculiar tendencies of the reader, and a host
of other causes which one may conjure up if so inclined. Fach of these
minute errors, if one is s0 minded, may be broken up into a number of
smaller elementary errors.  For the purpese of the derivation it is neces-
sary, as stated, to assume that these clementary errors arc all of the
same magnitude and that each oceurs as often negatively as positively.
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The way in which any particular clementary error enters in a particular
measurcment would be, of course, quite beyond our power to control
or to prediet.

Let 6 be the magnitude of one of the assumed equal elementary
errors entering a measurement. The probability that any 5 will enter
positively i3 }4; the probabilily that it will entor negatively is- also
16, If there are m of them, the probability that zll the &s will be
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Fig. 2. The frequency distribution of the crrors of E‘;Jel‘vo readings of 8 cerlain prism
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angle, assuming the al‘lt.hlIle‘tl%f meany) 1 ;R?l%?‘ atll%efo‘;‘g]f]in

. . Ny 1y
positive, thus yielding an error of “wnsd, is evidently 2/ The prob-

ability that all &'s but onceawill be positive, and that the resultant

Ay m—1 1 1
error s <-(m — 2)8§, is m\R;) X (2 - The factor m appears

here beeause therendre m ways in which the eombination of errors
under conaidemtin@ can take place. Similarly, the probability that
only (m — 2)3'¢'wll be posm\'e giving a resultant error of +(m — 4)é

we—2 2 — i
i m(m - 1) ) :' , or, w (]5) « The coefficients

of thqﬁ T 2 are scen thus to be the coefficients in the pinemial

¢xpansion of (@ 4 1)™. Table I follows.

In Tig. 3, the computed probabilities, dP, are shown as small rect-
angles, cach 28 wide. In the limit, as 6 — 0, the height of a rectang%c
becomes the ordinate of o point on a smooth curve. This ordinate is
called a probability coeflicient and is defined by

_dp 1]

ydx
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TABLE I

THE NORMAL FREQUENCY DISTRIBUTION

Trr RELaTiON BETWEEN TRE CoMPONENT ELEMENTAHY ERRORS AND THE HE-
sULTANT ERrORSs OCOURRING IN MEASUREMENTS, aND THEIR PROBARILITIES OF
O URRENCE AcCORDING To HagEN'a TEEATMENT
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Irc. 3. The probability of an error occurring in measurements as # funetion of the
error, according to Hagen’s treatment.
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wherce dP represents the probability of an error lying hetween x — léde
and © + lodz. Physically, ¥ is related to P and to z just as a velocity
is related to distance traversed and to time. .

We geek the equation of a continuous curve which represents the case
where the elemoentary error, 8, becomes indefinitely small, and the num-
ber of elementary crrors, m, increases without limit. This may be ob-
tained by (1) determining the Ay/Az between the tops of adjaeent ele-
mentary rectangles of Fig. 3; (8) obtaining the corresponding lin; (A_z) ,

. Ax—
or, dy/dx; and, (3) integrating dy/dx with respect to x to obtain y = f{2\
Following this plan and using the points of Fig. 3 corresponding to the

errors Fyq1 [= (m — 21 — 2)8] and z, [= (m — 2Zn)6], we havq\' \)
m_n >
Ay_yn—yﬂ+1_?fn_-n+lyn__yﬂmT'z;?,:l 2
AT ¥ — Ty 25 2N w + 1
Noting, except for the tails, that n>> 1, and thapfor the error 2,
2 = m — 2 [3]

wws.:{.tlbl'aulibral'y.org_in
we may write, in the limit, for thejrééion where the errors are small in
comparison with the maximum pessible error, i.e., where 2 Km 8

R [4]
7.3
7\NW .
The error m\\s;"ﬁhat occurring when the elementary errors are either all
positive ¢k ‘ull negative, is relatively very large; &, on the other hand, is
one;llalf the minimum varistion in errors, and is infinitesimal in com-
pm‘{séﬂ. The product ms® is finite, however, and is of importance in
the discussion of the law. Customarily the fraction 1/mé® is reple_a,ced
by 24%. The significance of 4, which is called the “modulus of precision”

will be given later. The differential form of Eqg. 4 then becomes
9 _ hPyx (5]

dx

whence, finally, . .
Yy = ke™¥'# (63
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This is the standard form for the normal law of crrors, or more appro-
priately and more generally, as will seon appear, the law of the normal
frequency distribution.

A plot of Eq. 6 in which % stands {or an accidental error ! of measure-
ment is shown in Fig. 4. In conformity with Fig. 3, the curve hus a
maximum at & = 0, 15 symmetrieal with respeet to the y-axis, and
approaches the x-axiz asymptotically at both extremes. Actually, be-
cause of the manncr of derivation, it oceurs that Kq. 6 iz only an approxi-
mation to what is called the binomial distribution law in which an

% &
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0 TyE e

1Sy
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Fie. 4. A‘E;&%% Itﬁ%lég{igl ohogg-'—-] r}ce_ﬁw.

infinite number of infinitesimal él{ﬁﬁlentary errors oceur. The two dis-
tributions differ most in the§eelons that are referred to as tails, On a
percentage basis, the ﬂ%@'&’ to check increases with the magnitude of
the errar. N

Another method of\derivation, due to Guauss, starts with the assump-
tion that the mogt probable approximation to the true value of a quan-
tity of whi{:h'rga'hf determinations have been made with equal preeision,
ts the aritmetic mean of those determinations. I@is procedure leads
finally tolthe result obtained by Hagen, namely, BEq. 6. As is to he
expec:‘ae\'gl; “and as will he shown, granted Eq. 6 as a conclusion
of(Hugen’s reasoning, we may deduce Gauss’s assumption as a con-
seqténce,

Although here derived on the basis of errors oceurring in & number
ol measurements of a single physical quantity, ig. G is often uscful for
representing other types of frequency distributions. Thus, the frequeney
distribution of the weights of a large number of apples, picked at random,

' We refer here only to such errars as may be elassed as accidental, None of the

t}fpes t.-hat may be classed as systematic errots, or that are due to theorcetical con-
siderations, enter into the law of normal { requency distribution.
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can also be vepresented rather closely by it. It is meaningless, of course,
to speak here of a “true value” for the weight of an apple or of the
eombined influence of a great number of “elementary errors.” It is
proper, however, to speak of deviations from a mean weight or some
gimilar value, caused by variations in such elementary factors as the
age of the tree, the cultivation it teceives, the type of soil, the climato,
the size and health of the branch, the location of the apple on the branch,
the amount of surrounding foliage which may cut off sunlight, cte. In
the discussion to follow, therefore, we refer to z-values sometimes as
“arrors,” but more offten as deviations. Q.

I'requency distributions are often desired {or other purposn:—gs\than
those of obtaining “best” values from groups of measurements’ A
knowledge of the distribution of the sizes of a sample grouptel manu-
factured produets tells whether the bateh from which “the sample
came is sulliciently close to the size specified, whethex ptéper manufac-
turing condilions are being maintained, ete. & &hoe manufacturer
would want 1o know the distribution of foot sizés)in the population in
which his produets are sold in order to propefly apportion his produc-
tion. A botanist would obtain the djstrilqut.'bn of sizes of a number of
samples of a cortain plant grown undey éperial conditions and compare
it with the distribution of sizes obﬁaiﬁédbmﬂﬁgrgpgigﬁgghpondiﬁom to
see whether or not the special conditiens produce a significant change in
the size of the plant. NNy

In general, as will be she@m in the following chapter, a randomly
chosen distribution will ﬁﬁ‘s\fol.low the normal law. Nevcrtheless, so
many distributions d& approximate this law, within the limits of
experimental or sampling error, that the concept of the normal law is
of great value, W€ should think of the normal distribution law not as
one which all Axpts of measurements must obey, but as a simple and
convenientJgw applicable to many distributions whose graphs huve the
general shape shown in Fig. 4. )

3. Galfon’s Quincunx, Of interest herc is Galton’s quinecunx, a piece
of '&flp\si-mtus which is based on Hagen’s assumption that » very large
number of small elementary errors enter to defermine an actual resultant
error in a measurement. Onee set in motion, the quineunx automatically
yields a binomial frequency distribution which resembles the normal
distribution and lends plausibility to Hagen’s method of derivation. In
design (Fig. 5), as suggested by its name, it is based on an arrangement
of five pegs, four of which are at the corners of a square, with the fifth
at the center, Small shot, falling down through the small hole in the
hopper at the top, receive small sidewise impulses directed with eql'lal
probability to the right and to the left as they impinge upon the quin-
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cunx array of pegs, and are finally ¢ollected in bins at the bottom. The
upper boundary of the collected shot approximates a curve of the form
of Eq. 6.

¢ /s

S%

FIGm?}.“ ‘Galton’s quineuny, a device for illustrating the physical basis of the norma:
frequency distribution law.

4. The Constants 4 and % of the Equation y = ke¢~*", As shown in
Fig. 64, varving the constant h, keeping % constant, results when
gl_"aphed m a series of curves which differ only in their lateral gpreads,
Similarly, varying % only results in a series of eurves which differ, as
show.n in Fig. 68, only in their vertical extents. Anv one curve may be
obtained from any other by appropriate expansim;s and contractions
laterally and vertically. Since a large value for h corresponds to &
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small spread of measurcments, h is appropriately a modulus of precision.
The significance and the evaluation of k, however, are legs evident.,
Instead of considering % itself, consider the significance of Eq. 6 as a
whole. Assume a group of measurements with least count Az, whose
devialions from their mean obey the law of Eq. 6. Then the probability
that o randomly chosen measurement has the deviation #, is y Ax; the
probability that it has the deviation s is ysAz; ete. Further, the prob-
ability that its deviation is either &y or 2z is (31 + yo)dz. Thus, the
probability that its deviation lies between — = and + o is SyAx. This
eum contains the 3’s corresponding to all possible z’s between — o apd

2.0 : 2.0 \ O
Z \

1.5 1.5 = %
| NQ'/ N
: Y10 . a,
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Sl T T
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%05 10 —05 00 05 1.0 15 D'—Dl.s,g—l. ~05 00 05 L0 1
x £

z
A B
g o bl'aulibral')i.orgd‘ln
e 6. Craphsof y = ke ¥ for varying values of hand k. “In A%he common value
for & is 1.00, In B thexgpmmon value for # is 1.00.

+w, Since it is certain fhat the random deviation concerned lies
hetween — oo and + = Z@A’a:, represented graphieally by the area under
the curve of Fig. 4, mustequal unity. As Az — 0, we have

Q" te

\ f ydr =1 [7l
)Y =

Fig. 6 shp’% that for each h a k may be determined to satisfy Eq. 7.

The DI\(;C'édurc follows.

B Normalization of the Equation y = ke ™. Tlere, the procedure
is hesed upon analytical geometry considerations, though such is not 2
necossity, In Fig, 7 is shown the solid gencrated by rotating about the
y-axis the curve representing the positive half of the equation ¥ =
ke ™+ Tet A/2 represent the area in the oy plane which is bounded
by the curve and the z- and y-axes, hence also the eorresponding area
in the y—2 plane. Then

4 =2 f e dy = 2 f e M dz 18]
1 0
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Further, sinee x and # are independoent variables, we may write

2 = 42 f e P dy f e gy
0 0
= 4] f f eI dy dy [9]
o Jo

Viewed geometrically with the aid of Fig. 7, evaluating the double jnfe-

gral eorresponds to determining the volume of the solid which is l)oyndml
e\
\\\ v

‘n/

Y

e \NO

Fia. 7. A conv'shlbﬁt disgram for use in normalizing the equation y = ke ",
« \

by the - 2\\?he 2y, and the y~ planes and the surface obtained I the
rotatuu;t about the y-axis. For the element of volume indicated by abed,
the”Bgmmon y-ordinate is ke 4" , where 2 = 32 1. »2 , and the ares of its
pr"‘%\a’vtmn on the x—z plane, dS, is (x/2)r dr. For thc volume, ¥, there

follows
¥V =fy dS f{‘f / eI+ g dz
0 0

ka P e '
=5 ey [10]
o

li
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The integration is simple. There follow

Ekx
V=
2
A2 = 4kV = —h?
and
/o
4 =BT 1]
h AL
Sinee 4 is to represent a probability of unity, we have O\
o\
; L
b= — N r12]

v

and for the normalized equation of the law of normal f;;z'quency distribu-
tion Y,

o = :/}_% e_hzzs‘..:\" [13]

Here y, iz to be viewed as a probabiljﬁj%dbe%ibntryﬁﬂg,mvhen prop-

erly expressed, has a unit attachedsSIn case z is measured in scconds,

h and y will be expressed in reciprocal seconds, and y, dx, an element

of probability, will be a nurperie. The subseript « in Eq. 13 has been

added to distinguish the .p'fi*']o%abﬂity coefficient there considered from

other different but similit eoefficients. that will be considered later.
Whenever it is desiréd to have the area under the curve represent a

number of observations, n, we need only set k = nh/ 4/ so that

"\ e .

&

'\\“

L&

b [14]

ynznyxz\/;,

Alt-lmjl'g}l'its units are the same as those for ¥z, ¥» itself is to bc regarded
as B, frequency coefficient. Obviously, to fit the normal law to an ob-
served set of measurements, it is nccessary to find the proper value
of h.

6. Special Values of x Associated with the Curve y = (h/v/7) e
~Precision Indexes, Four z-values of special significance, usually
referred to as a group by the name precision indexes, are {1) 1/h, the
reciprocal of the modulus of precision; (2) @, the average deviation;
(3) o, the standard deviation; and (4) p, the probable crror. They are
defined with respect to Eq. 13 as follows:

&
al

—H2r?
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1. The quantity 1/ is that value of z for which the corresponding
y-value iz 1/e times the maximum y-value; ie.

_ Yo _ h S
(yadrin = = [15]

e

It is seen that high values for ¥ and narrow spreads go with high
values for k. Bince precise measurements vield distributions of this
shape, k is appropriately s modulus of precision as already noted.

2. The average deviation, a, is defined as the mean deviation wit{-
out regard to sign. Mathemaftically \

- L\
2 il NS ¢
o -/‘: L ¢ B 2h nxe”"’*’ﬁ e = 1 I,t \J/ -
® VLN '\r['i'h‘ L
Yz d 4

3. The standard deviation, o, i defined as tille étﬁuare root of the
mean squared deviation. In terms of Eq. }3J\\"

. ” e)

2 ~ N’

Ty, dx $,

. e -——-—f s It - 21 g
fny 0 W %’!};&j&’rﬁgrg.m 54 L

£ N

a3
-« \
~ 3

4. The prebable error, ins that value of & which satisfies the re-
lation ~

¢ NJ

\h‘k""fvh} S | .
Nval, e dx 5 [18]

The area un'de'i"'.\tfle normal curve between the limits p and —p is
one-half t])f-.\‘tg\tal area; and the probahility of a deviation less than p
in absolute-value is equal to the probability of a deviation greater
than 33‘: y means of tables we find p = 0.477/4.

Tl}é)?élations of the precision indexes to one ancther for a strictly
noxpral distribution are given by ;
1 .
piaie i =0477:0.564 : 0.707 : 1.000 [19]
and approximately by

=31 :4:5.7 [20]

=l
b3

pidic:

1 It,' would be more logical to represent the second memhber of this equation as
(yz)o/e; but no other value such as (ys.)o is being used, hence the simplifieation.
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The relative positions of the precision indexes on the curve of Eq. 13
are shown in Fig. 8. The values of the ordinates ecorresponding to these
special values of x are alse indicated in terms of the maximum ordi-
nate, ¥o.

It is customary to indicate by a subscript the quantity to which a
precision index applies. Where, as above, the indexes are obtained for

N
/ |
yp=;0.?9? % N
Xy(&:o.?zayo >
i [T O
| / Y iy =007

/ , \\}%;éyu:o.asm
4 <3 - \\
/ 0 R . \
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9' Pacg 1/;3 ©
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*

Fic. 8. A graph of the law of normal fréquency distribution, showing the relative
poiitions of thewl;(t:cision indexes p, &, o, and 1/h,
+ &)
a distribution of x-va.h}eB} it is proper to write them as ps, @z o
and (1/%),, and to corstder them as applying to the individual z-values
comprising the didtribution. .

7. Tabular Representations for the Normal Curve, The caleulation
of y-values @fﬁe‘éponding to given z-values in Eq. 13 is somewhat in-
volved. Qb¥iously, a table of corresponding - and y-values would
climinatelhuch computation. However, since the physical nature of z
andrtifevalue of & both change from one distribution to another, sluch
a tahlé would, in general, be valid for only one particular distribution.
If, however, instead of x, we use ha, or &/g, or z/p as the indepenc.lent
variable, a gingle table will cover all cases. Recognizing that for » given
distribution regardloss of whether deviations are expressed in'term’s of
%, hz, x/¢, x/p or otherwise, the probabilities associated with given
ranges of measured values must remain invariant, we may write at once

T

X
Yo A = Yo dhT) = Yoye d (;) = Yorpd (5) [21]
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of which %ue, ¥s. ete., like y,, represent probability coefficients. For
the case involving Az as the independent variable, we have, as is evident

s = e D) [22]

dzx
With the aid of Eq. 22, one may easily obtain a distribution of 3, = f(z),
once given tabulated values of

= L —Riz?

he = f(hz) = hyz—\/;e [23]
ag in Table I of Appendix 2. To illustrate, the ¥, corresponding'to
h = 5.0cm ! and z = 0.10 cm, is obtained as follows. From t@e :l,bli‘
the value of g, for Ax = 0.50 is scen to be 0.439. Multlp‘llbd by &,

there results 2.20 em™!, the desired .. N
Frequently a normal frequeney distribution curve is itted to observed
data in order to find the expected probability Yo occurrence of a
deviation lying between 2; and x5, For this purpgséwe desire a conven-
ient method for obtaining the probability,, P of a deviation lying
between —z and +z, for we may then E-xpms«}\tho probability of a devia-
tion lying between z; and z; by onv—ha]i of the differcnce P, — P..

The value of P, is represepted mﬁhlﬂh’gm@wea under the normal
curve between the limits —z and &y or mathematically, by

P& [ [24]

To cvaluate P, we rrgzbs (1) draw the normal curve and measurc the
designated area withiha’plunimeter; (2) calculate or obtain from Table I
of Appendix 2 a8efies of ordinates between 0 and z and apply a quad-
rature iormul\a;\@) express ¢ * in serics form and perform the inte-
gration indicated by Eq. 24 for each term; or, preferably, (4) make use
of tables, ‘g\mg probability summations. The results obtained for each
of ’rhe\hlst three procedures, showing P, as a functien of z, are valid
(K i only one distribution. Obviously, a probability table is desired

whose values are independent of both the nature of z and the value of A.
One such is obtained when A is used as the independent variable. The
evaluation for the normal law may then be written

it

= —} e~ d(hz) [25]
T Jo

A table'showhlg Pz as a funetion of hzx such as is found in Table II of
Appendix 2 applies to all normal distributions. If, for example, for a
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distribution where h = 5 em™, we wish to know the probability of a
positive deviation less than 0.1 e¢m, we first note that az = 0.5, and then
read the desired probability from the table ag one-half of Py om = Pie=05)
= 0.520 or 0.260. On the other hand, the probability of occurrence
of a deviation, either positive or negative, less than 0.1 ecm is Pzep.5),
or 0.620.

In practice, o and p are used much more often as precision indexes
than is 1/h. In consequence, values for P,,, and P, as funetions of
z/e(= hx/0.707) and of z/p(= hx/0.477) are often desired. Such values
are readily obtainable from the table just referred to. O

Mustrating the use of Table II of Appendix 2 with respect to F, .,
consider the following, Given that the standard deviation for thie Tateral
deviations of target hits from a central vertical line is 15¢inehes, and
that the frequency distribution is normal, what iz the lexpected por-
centage of hits falling within the 15-inch range? Whabirange of devia-
tion will probably include 909, of the hits? Replying to the first ques-
tion, it is apparent that we scek the value of P nio> 1) We first find the
value of hz(= x/+/20) that corresponds t(i&'t}o‘ = 1. It is 0.707.
In the table we find the corresponding’lf'h} to be 0.683. Obviously
this is also the desired Py ,—1 and thé\pereentage is 68.3%. Reply-
ing to the next question, we seek ﬁyasg;zm#emmi@hmagiwo% for the
corresponding Py, and then the cefresponding /¢ and z. These values
in turn are found to be 1.16, 1.64 and 25 inches.

Similarly, illustrating theGse of Table IT of Appendix 2 with respeet
fo P;;p, consider the fo]low’iﬁg questions. Given that the probable error
for the masses of bearihg balis of a certain group is 15 mg and that the
distribution is normaly what is the expected pereentage of balls whose
deviations are ab.fédst 30 mg or 2p? What is the minimum deviation
from the meammass that will inelude 999 of the balls? The procedure
here is very &inillar to that used just above. Replying to the first ques-
tion, we deek the value of Py, p=2. The corresponding hx{= 0.477x/p)
is 0.95%% The corresponding Py, is 0.823. This is the desired Py
@ﬂd\:ﬂ}e answer is unity less 82.3% or 17.7%. Replying to the second
qbestion, for & Py of 999, the table indicates an kx of 1.82. The corre-
sponding 2/p and z are 3.81 and 57 mg.

8. The Arithmetic Mean of a Set of Measurements. We return now
to the question raised at the beginning of this chapter: given n measure-
ments of a quantity, Xy, X, - - Xn, all taken with equal care, what, on
the basis of the normal frequency distribution, is the most probable
value of the quantity? As an aid in finding this value, we introduce
X", an arbitrary function of all the measurements. It may be
conveniently thought of as a variable pseudo-mean whose value
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depends on the method of formation. We may, if we wish, define it by

o, [EX™\Um i
X _( - ) [26]

where m, as a variable, may have any value ranging from 0 to =,
Let 2"y, 2"3,- - -2y be the deviations of X, X,,---X,, from X", Un
the basis of the previous discussion of the nature and the distribution
of errors, it is now assumed that the preferred value of X ig that for
which the corresponding combined probability of simultaneous qcpui-
rehee of 7y, x'’s,-- 2", 15 2 maximum. If the set of measurenibiiy
obeys the normal la“ the probability of cmcutr( nce of the dew\tlon
x’", i.e., the deviation lying between 2"; and 2y + Ax” wh(”m Az s
the least count of the set of measurements, is given by &N

APy = Py agry — Py = o Mi'\\ 127]
Similarly,
AP r, = ypr, A", et g\ [28]
The combined probability of the dev 1at10ns :.'?’ 1 and 2"y both oceurving
in the order specified s then given by |\
WWW bl 1':1 BT‘aI y 0]"8 in

(8%PYyn, oy = A By = Yo, Yoy (B37)7 129]

n ,)'2 e
= |52 ) e PEEHED (ppy2 f30]
u(\f )
Hencc, the condltlon ﬁx}mt the combined probahility of oceurrcnce of
'y, 2y, shauld‘ be a maximum may be written as

\:

(Ai{z 13%71 = <\/_ ) T (aa)" = o maximum - [31]

. 2\ - .
or, in legarithmic form, as
N h Az’

w\\: ...:ln AHP e " — ] ( )"’ _ .2 2 - ,'.
V (A"P),, n = M N h*Zx g maximum  [32]

The conditions which must be fulfilled in order that Eq. 32 may be
truc are
XH’ DD(ARP):C ST :C"n] =0 [33:[

and
2

d .
I [In(A”P) ezt ] < 0_ [34]
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As the first derivalive, we have

d . d(zqu)
r—— l AnP ." - " = - -2 —
dXH E n( )z 1r Ea ﬂ] h dXH
d&t}'” d:z:” dxr‘f
=_h2( 2 _1 e _2 ”n"—;—n)
} 22" ax + 22" & + 2z ax’
= 2832”4+ 2"y 4+ 2) [35]

The step eliminating the derivatives is a consequence of the definition
of an 2’';, namely that 2"y = X; -—— X" and that accordingly

da:”k 7 '\:\ )
—- = —1 N 7306
= O
As the sceond derivative, we have \ 3
e &
m [l]’l(A P):r”l,- .. x"’n] '\\':
d £*¢
= —— [2h2($”1 -+ 3.."'”2"%\-\-’ 'xun)} — -“Zﬂhz [37]
ax PN
Applying the condition of Fqs. 33 @p@%&g‘pﬂ}mﬁ%ﬁ?%-gm
2+ a2 = 0 [38]
und o
-2nk? < 0 [39]
)

It is at onece evident th}t\tﬂe latter of these two equations is true and
that the former fulﬁifs‘ the condition that X’* shall be the arithmetic
mean of the givenh s measurcments.

The conelusioh just derived with the aid of the normal frequency
dist-ribut.ioﬁ\(a.“;; as noted above, was used by Gauss as the fundamental
assumptjqﬂ\)n which his derivation of the law was bascd.

Regitangement of 13q. 32 yields

i \ W

~ Ze® = i (hﬁ)n — g maximum = @& minimum [40]
/7

where now an z represents the deviation of an individual measu?'ement,
X, from the mean, X, In this form one sees that the assumptions (1)
that the measurements follow the normal distribution law a,nc_i (2) that
the combined probability of cccurrence of the obscrved deviajtlons fror_n
the mean is a maximum lead to a least value for 22 This is the basis
of the well-known principle of least squares.
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9, Summary. A knowledge of the law of frequency distribution gov-
erning a set of data is often valuable as a means to an end, e.g., in find-
ing the best value of a scries of angle measurements, or as an end in
itself, e.g., in helping a shoe manufacturer to decide how to apportion his
production. A great number of such laws have been derived. One of
the simplest and most applicable is the normal distribution law

PR e
= e g N 14
Vo= /2¢ [14]
~

Ilere x represents the deviations of the observed values from theiparith-
metic mean; k, the modulus of precision, is a constant whokd™alue
depends on the precigion of the data, i.e., the spread of thé observed
values about their mean; » is an arbitrary constant uswally set equal
to 1 or to the total number of observed a-values; and¢#(fag the nature
of a frequency coefficient or a probability coeffigient, depending on
whether n equals the number of observed values\dr unity.

Bpecial values of = of inforest are (1) the’ arithmetic mean of the
x-values, for which the corresponding y, jag its maximum value, ¥o;
{2) the reciprocal of the modulus of preciion, 1/h, whose corresponding
y-value is #o/e; (3) the @}W_Qﬂyﬁﬁoﬁn for which y, = 0.728y,;
(4) the standard deviation, ¢, for whieh y, =]a%.607y0; and (5) the prob-
able error, p, for which g, = 0.78%yo. The quantities. 1/4, g, ¢, and p
are called precision indexes and are related by the equation

o\

pra :g\.\% = 0477 : 0.564 : 0.707 : 1.000 [19]
The quantity\ilf?:;\, defined by
' X

\“ h *
,\\ PI = - ['_kgms Fi
ol ‘\/1r f “ dz [24]

N\
r&gr‘eéents the probability of oeeurrence of a deviation not greater than
% in magnitude. The probability of a deviation between x; and zz in
value is then P,, — P,. The probable error is that value of z for which
P, =15
Values of y, in Eq. 14 corresponding to speeific x-values are most
conveniently obtained from Table I, Appendix 2, showing

1
Yrz = :'/: ¢ hi [23]
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Values of £, in Eq. 24 corresponding to specific z-values are similarly
best obtained from Table II, Appendix 2, showing

hx
P = % _/; e (k) [25]

The assumptions (1) that measurements obey the normal distribu-
tion law and (2) that the combined probability of occurrence of observed
deviations from the best value is a maximum leads to the conclusions
{1} that the urithmetic mean of a set of measurements is the best approxi-
mation to the truce value of the quantity measured and (2) that the Wjm
of the squares of the deviations of the observed values is a minfmum
when the deviations are taken from the mean. Conclusion (2]\Ms“the

basis of the principle of least squares. A\

ot ¥ i

Lo A\
PROBLEMS o)

1. Plot, on ihe same set of coordinate axes, binomisl distelbutions whose succeed-
ing ordinales correspond to succeeding coefficients SME + 3)* and & + )
Malke the total widths and the areas included undep £the Two curves the same,

2. Plot to seale, on the same set of coordinate ﬂk%, two normalized curves such
that the modulus of precision of one is twice thathef the other,

3. With the nid of tables, find, for one afvhe.dimeslebPreilonithe values of z
for which P, has in succession the values @2, 0.4, 0.6, and 0.8, Draw vertical lines
on the plot at the appropriate shseissasthy

4. What are the values for y that torrespond to values of 1/h of () 2 sec,
b} 150 em/see, (¢) 40 in., (d} 3 w'da.y?

B. Where L /h is 2 ft and the least count is 1 in., what is the probability that three
randomly chosen mmsurem’é{bs,. regardless of the order of their taking, will have
deviations of 8 in., 16 in.{hnd —4 in.? What, if the order is specified?

8. Show that the (}l{r“e of the normal distribution law has inflection points at
T = 4. £ )

7. A value whi 1’;}!;5 been quoted for the rest mass of the electron me is 01154 ¥
1081 :I:U.OOG{SJ krm, of which =0.00018 has the significance of a fractional probahle
error and g €qual to Duny/ma. On the basis of the above statement, d_etermine the
probahilitfthat, the value given is correct (1) to within 0.0005 X 10728 gm, (2} to
within 0300010 x 10728 gm,

Avalue quoted for the ealeite grating space at 20° C is 3.03560 (1 + 0.00002) A
{see ¥roblem 7). On the basis of the above, determine the standard deviatio_n and
the modulus of precision for the quantity and the probability that the result is cor-
réct to within 2.57s.



CHAPTER VII
THE NORMAL FREQUENCY DISTRIBUTION (continued)

1. Introduction. In the preceding chapter we discussed the deriya-
tion and the interpretation of a theoretical frequency distributiony she
so-called normal distribution O\

NS “
Yz = % e [1]
It was there noted that any observed set of values,,,,aiq&&imed nornally
distributed, is to be considered as a sample set frouhvan infinitely large
parent group of measurements whose freque:n(,y d{qtnbutmn has the form
of Iog. 1. \

In this chapter we shall describe the rel@tmn between the sample and
the parent distributions in greater detaih” With this purpose in mind,
we discuss first the proc eniumroftﬁrhhhgrhhgr begtinormal curve 1o o given
distribution, and then we develop Bhort methods of finding the mean
and the precision indexcs. Some hscs of the precision indexes are de-
scribed, and criteria are obtained for the rejection of observations pos-
sesging unduly large deviasﬁa}is from the mean, Limitations of the nor-
mal law are then preschted, and certain tests for goodness of fit of the
normal law to an ohérved distribution are described.

2. Quantitative ‘Evaluation of Precision Indexes, The process of
fitting the beghnormal curve to an observed distribution i is, in effeet,
that of d('tqtzn;hmg the most probable distribution of the infinite parent
group. - Bor'this purpose, the calculation of only one constant, the mod-
ulus of precision, k, is required.

&wgn 7 equally pI‘G(le‘ measurements of & guantity Xy, Xs5,-- X,
with/deviations x;, z,,- - -2, from the mean X, the assumption is made
that the desired modulus of precision is the modulus which aseribes to
the observed data a maximum of probability of occurrence. Assuming
the normal law, the probability that the readings will oceur in the order
given is

(A" gy = APz X AP, X+ AP, (2]

By n .
= (T/;) g hrEs (Az)™ = a maximum

1656
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or in Iogarithmic form

_ n
In (A™)...., = RInh — Elnw — 1h%32% 4+ nln (Az) = amaximum  [3]

Differentiating with respect to A, to obtain the medulus associated with
the maximum probability of oceurrence, yields

d n
7 (n (A"P)r. gl = B 2hZx% = 0 [4]
whence ~
2 _ " \
"= 2Za? '\~\[5]
or O ’
1 ;22;32 N 1
B Al n \: el

A second differentiation of Kq. 3 with respect to & yi‘elds’ —n/h? — 232,
a quantity which is essentially negative and ipdibert-es that the relation
expressed in Eq. 6 corresponds fo a conditipr}o‘f maximum probability
for the given measurements. OO
In view of Eq. 6, the most probable.’v%ues QL the precision indexes
. e . .l rauli l'ary.org.m
for an individual observation are given by

o= ﬁ: E:'—g (7]
8067450 = 06745 g:—z 8]

and \
“\\ - 2| x | 9]

* Many a'gfthors differentiate between the precision indexes 1/k, 5, and p compg‘ged
for the 'iirdi{:iduai readings of the sample group and the corresponding precizion
in‘gﬁsé ior the infinite parent group. These latter values are assumed to be more
worth/while. That {he mean of this latter group shall coineide with that of the
former group is not to be expected. Consequently the deviations ¢ which have b.e,en
treated above are not devistions from the frue selue of the quantity measured, i.e.,
the mean of the infinite group. Obvicusly, could deviations frorq this unknown
mean be used in eomputing for our sample group the values of 17k, &, =_Mld P, the
term Za? would be greater than that actually found. Statistical theory gives for it8
most prohsble value nZe%/(n — 1), 1t follows that the precision indexes _then
obtained are greater than those represented in Egs. 6, 7, and 8. They are o_btamed,
in fact, by replacing the n of those equations by = — 1, and are so found in many
texts, The present- authors, however, are devialing from this policy. There are
three reasons. Hirst, by keeping the forms of Egs. & 7, and 8 as they are, the cor-
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As preeision indexes, p and ¢ are used more often than a. That this
should be the case, despite the evident greater ease of determining an q,
seems to be largely due to a discovery by Gauss. He found that p and
7, as defined above, were 149, more effective than e, and 99 more effec-
tive than (Z2®)*, another possible precision index. Expressed otherwise,
the p or ¢ from 100 observations is as procise, relatively, as the « from
114 similar observations. (See page 196.) Because of the foregoing, we
shall, for the most part, from now en, ignore a as a precision index.
Further, when deseribing preeision indoxes for quantities, following cus-

tom, we shall ignore 1/k also and emphasize only p and . N\
To fit the normal curve, we need only calculate £ and substiput\'e in
{ o
h A2 ;'\
= — g 1
Y . € N [1]
if a probability cocfficient is desired, or in \\
nh \
Yp = —— c—?aezs'x.'\\. [10]
w ) '.\ &

if a frequency distribution is desired. ’Ih:nélculating h and the precision
indexes where = is smaﬂimp_agayumgp?i@ﬁgimuse Eqgs. 6 to 9 as they
stand. Usually, however, Za? willlinvolve lengthy computations, espe-
dally if X is carried out to mafe'significant figures than are contained
in the original X-readings. Hence, the usc of some short method such
as that of the following gm@tion 15 advisable as & time saver and as an
aid in eliminating corputational crrors.

8. A Short Method of Computing Means and Precision Indexes.
To find the meaua¥id o, say, of the moeasurements X 1y Xa, Xy, we
first assume gn dpproximato mean, X', having a convenient rounded
value necar :tﬁat of the true mean, and then deal with the differences

rcspondjr.lg equations relating to the more important precision Indexes of meansg are
kept:sli;npfer. Instead of involving Valn — 1), the simpler relations involve n only.
PHesecond reason is that in practice seldom, if ever, as will be indicated luter in 1his
chapter, are truly normal frequency distributions encountered, even in the infinite
parent groups. At the best, then, the precision indexes sought can only be approxi-
mations, and it appears that in reality the expressions involving 7 only may be as
significant as those Involving Vain — 1) instead. The third reason is that even
for parent groups whose distributions &pproximate the normal very eclosely, the
uncertainties in the precision indexes themselves often exceed the assumed error dus
to approximating (n — 1)/n by unity.

Nevertheless, for the sake of thoge who differ, the suthors will attempt, through-

out this ook, to make reference to this footnote wherever the above simplificatior
has been made.
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N -X, XX, X, - X', The associated numerics are usually
gmull and more or less evenly divided between positive and negative
values. Procedurc is based on the following basic relations:

22X X+ X -X)] o, EX-X)
¥ -2 [ { )]:Xq_ﬁ.,(—):)(ura [11]
" L n
and
. 2P _EX-X? IX-X -
T R - no
_ 3(X = X)? - 243(X — X) + na?
o n .\:\
X — X Y_XV]E X — X2 O
I [EX B BEXY @ g
n n n .

The necessary computations, together with a check to beiii%cussed later,
are carried through in Table I. To one who has doh€ truch computing,
the smaliness of the numbers dealt with makes, Meonsiderable appeal.

Where computed results are matters of congeinyit is desirable to have
checks as insurance against errors. Thergdaxe two checks possible for
tho mean, X. One consists in determining fctual values for the devia-
tions X — X and then noting whetREFFEH et tHe #mPod-ithe positive
deviations equals the sum of the négative deviations. The other con-
sists in selecting a new X' and proteeding aceording to Eq. 11, taking
care not to use computations made use of in the original caleulation.
The second method is i e,Ij'..ﬁ’o he the shorter if the value of the mean
is carricd to a greatef\number of significant figures than the original
measured values, _ Nelther of these checks need be made in case one
hag determined thé " and wishes to insure against (-',rror_thero also, since
certain checks £0F, & involve a simultaneous check for X.

Two procediires for checking o will be cited. One is based on the
defining re}z}tion, Eq. 12, which by simple expansion yields

O X ‘%
\\;..0_2=E(X—X)2=2_X_E__2XEX+y2=§§__X2 [13]

This equation does not involve summations previously made, and there-
fore can satisfy as a check. The summation X2 will, however, gener-
ally involve uncomfortably large numbers. Procedure for th'e secor}d
check congists in selecting a new convenient X' and proceeding as In
Eq. 12, This method, which is {llustrated in Table I, is likely to prove
much the shorter. The reader who doubts this assertion is invited to
make the test, using Eq. 13.

n # L
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When caleulating o for a set of positive and negative values whoge
mean is nearly zero, the advantages of using Eq. 12 rather than Eq. 13
generally disappear. Note that it X is taken as zero Eqs, 12 and 13
become identical, o that only the second of the two checks for ¢ men-
tioned above can be used.

TABLE 1

IiLusTRaTING A Ssort METHOD FoR COMPUTING ¥ aND o, TOGETHER wiTT A
CovvexnienT CHeck. TR FREQURNCY oF OCOURRENCT 0F Th OQBSERYED ViALTES
oF X 18 GIVEN By f

— N
X' =128 X =120 L)\
X f i | : ;'\ ..
XX X - AX TR X - FX & rx - X0°
_ : K&
1257 2 i -3 -6 18 —4 -8 22
1261 3 1 —2 -8 12 -3 -9 o7
1276 9 ~1 -9 9 2 ~18 36
128 | 15 0 0 0 [\ —15 15
120 | 11 1 11 11 NV o 0 0
10| 7 2 14 28 4 171 7 7
131 2 3 wwrw.d braul ghgaty orggn 4 %
132, 1 4 4 NI 3 3 ]
50 14 A 12| —36 134
S I N i
NG
A= ;@28 A= —38_ 072
X ='12§.+ 0.28 = 128.28 X =129 — 0.72 = 128.28
AEAE — (0.28) - 2.16 of = L3 _ (0.72)% = 2.16
QNP 147 v = 147
o @=0.675 X 1.47 = 0.99 P = 0.675 % 147 = 0.09
AV -

&
Aceepted Walacs: X = 1285 4 == 1.a;p = 10

AN

4\ Chauvenet’s Criterion. Occasionally, in & series of readings, one
or $o values oceur which differ considerably from the series as a whole.
Though we might normally expect such widely divergent values to oceur
once, say, on the average in 100 readings, it is quite possible for that
once to oceur in a group of 10 or of only 5 measurements. In such a
case, the influence of this divergent reading on the magnitude of the
mean is disproportionately large, and 1t is generally conceded that the
mean obtained would be closer to the true value if this reading were
rejected. There is no suggestion in the eriterion that a gross error has
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been made in taking a rcading which it rejeets, although it is very pos-
gible that such is the explanation for the deviation.

Rejection of a given reading of a series on the basis of & hunch is not
satisfactory, and a criterion of rejection is desirable. Of the several
which have been developed, that due to Chauvenet seems most gener-
ally accepted.  In words, this criterion states that any reading of a
gseries of » readings shall be rejected when the magnitude of its devia-
tion from the mean of the series is such that the probability of oceur-
rence of all deviations that large or larger does not exceed 1/2n. BEx-
pressed partly in equation form, it states that if the deviation » of{a
readling from the mean is greater than the deviation I, where Z is de-
fined by R\,

£\

h i+ 202 1 Lo
— Pg =] — —— —Ha d\x = AN 14
! v .[ s ° 20 8 1)

.

the reading shall be rejected. To illustrate, in a ser‘ieé\of ten readings
whose probable error is p.(= 0.477/h,}, a rcading shall be rejected if
its deviation from the mean is greater than 29%0}(5&13 Table III, Appen-
dix 2). The probability of occurrence @f all deviations as great or
greater is then less than 1/20. For 20 rqafdihgs, the value of T is 3.32p..
The variniion of F with n is shown inxil‘wblbr-lﬂ;b&@pﬁh@g&iﬂ-

If, after o reading has been rejected in accordance with Chauvenet’s
criterion, il is felt that a se<_1ond’i‘éad.ing is also too divergent to retain,
it too should be subjeeted t ADe criterion, with the understanding that
the reading already rcjectédis no longer a member of the series and the
New IMeun Coneerns th}\ — 1 remaining meagurements, This pro-
cedure may he repeati;d antil it is found that no values lie outside the
limits set by loq. M8/

5. Limitation$\6f the Normal Law. It is blindly assumed by many
that the ms{f I\n’éjorit-y of frequency distributions obey the normal law.
Therc a}"e" any reasons why such should not be the case. We shall
discugsieertain of them in some detail.

A, The normal distribution is symmetrieal—cqual positive and

negative deviations between limits from the moean are equally likely

to ocenr. Few observed distributions are perfectly symmetrical, how-
over, and numerous distributions show a decided pr(:ponder:;l‘llc(.e of
values oither greater or less than the mean (Fig. 1). Such distribu-
tions are called skewed—negatively if the majority of the ?bserx’a-
tions exeeed the mean, and positively for the opposite (’-Ondltlm_l‘
2. The normal law permits variations [rom —* to -l.-m_; Le.,
assigns a probability greater than zero to every finite deviation from

it
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the mean. Henee, such distributions as that of the speeds of mole-
cules of & gas at a given temperature (Fig. 1) cannot be represented
Ly the normal law sinee it is meaningless to speak of negative spoeds.
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FiG. 1. The non-normal distribution of the spcegls\pf’bxygm molecules at 0° C.

3. The normal curve has only one 'm'a”ximmn ordinate, at the mean
value. Some distributl6Hd fREHEETAE808re than one maximum
(Fig. 2) and cannot be normal [0

4, Let us assumc, despite_the three limitations stated, that a par-
ticular distribution, say @L@; of the diameters, d, of a group of bearing
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£

RS

.
o o

.
-3
I

.
]
[

Iirr'rrlrlllrl[rrli
=54 0 SA A
Displacement of Pendulum

7/,
Probability per Unit Dfsplac:ament
= ¢
T

[
4=

Fie. 2. A non-normal distribution with more than one maximum ordinale, showing
the probability of finding a pendulum bob at different, displacemenis from its equi-
librinm position for a given amplitude of vibration. (University of Pittsburgh.
Atomic Physics, 2nd Ed., p. 165, New York, John Wiley & Sons, Inc., 1937.)

balls, obeys the normal law, at least to the extent of the balls whose
diaraeters fall botween d + opqs and d — Bp,,  Then it necessarily
follows that if all the balls arc truly spherieal and of equal density,
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the distributions of their masses, 1.e., of the (%) of the boaring balls
cannot obey the law. Consider three hypothetical balls, 4, B, and
€, with diameters equal to the mean diameter, d, the mean diameter
minug the probable error of the distribution, d — p,, and the mean
diameter plus the probable error, d + pg4, respectively (Fig. 34).
Since the diameter distribution of the group of balls is assumed
normal, A, B, and € divide them into four cqual subgroups—those
having diameters less than B, those having diametors between 4 and
B, ete.  Assuming equal density and truly spherical shape for all, A,
B, aud ¢ again divide them into the same four equal subgroups o N

N
O\
o - - 7
= A = £\
= — =] \
5f B c 5 \
52 S \Y
2= 25
@ 3 SE
SE g
o =2 T =
F=3
Ea £
= =
= = A
d-p, d d+p Vv
i poe
Diameter, & a \® Mass, ™
(4) (B)

Tre. 3. Distributions of (4) the diameters W ¥Ry bRa v bEarar @uRedD of bearing
Lalls, 10 A is assumed norpm‘l,. B iz neccssanly skewed.

the basis of mass also; e, N balls having diameters less than B also
have magsses less than B,(etc. Hence, if the mass distribution is to
be normal, ball A should have the mean mass, and B and € should
have masses respecti{tely less than and greater than the mecan by an
amount equal to*the probable error of the mass distribution. How-
ever, the magse®of A, B, and (' are b, b(d — pa)’ and_b(d + pa)?,
respﬂ?t-ﬁ-’ﬁ[’»{ where b js an appropriate constant, and it is seen .tha.t-
the mmi%.d}f’ferenee between A and B is not cqual to the mass dL["f_er-
enee .th{-{‘een A and € (Fig. 3B8). Thus, if the diameter distribution
iﬁ{'ih;mial, the mass distribution is skewed and hence nonnormal.

By similar reasoning it is secn that distribution.v: of the surface arcas
mvolving @2, the moments of inertia involving d° the v_alue?. Of. 1/d,
1/d, otc., for the group are also nonnormal if the d-distribution is as-
sumed normal. Sinee the a priori probability of normality for the dis-
tribution of d is equal to that for d%, &%, &%, etc., the probability of
any one oheying the normal law strietly is effectively zero.

Further evidence as to the nonuniversality of the normal ]aw. even
for ordinary distributions is furnished by: the large number of statistical
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distribution laws in use for differcnt purposes. Fry ! lists eight types,
some of which cover several subtypes. Those named in addition to the
Normal law are the Poisson law, the Binomial law, Pearson Types I,
1T, 111, and IV, and the Gram Charlier series.

As such nonnormal distributions of considerable intcrest in present-
day research, we have the Poisson distribution, its integral, and its
derivative. The equation for the law itself is

&)

— o —_Tlx 4

P [ T é ! N [1})]

o\

of which P, , represents, for a random distribution of event®\in & lim-
ited range of the variable z, the probability that » cvents ill ocenr in
the interval x, « the average interval of = between evonf% and aceord-
ingly #/a the expected number of events in the mim‘»al z. For the
case of n = 0, or no events oceurring in the mtcrval Eq. 15 reduces to

\‘

Podr = e™®%dy 1 [18]
and, the rate of change of Py . with resp:tacft. to %, to
w@f_{g@lgu l_i_i_:n;gdglé}qgﬁg_ in [ 1.?-]

dr o3V a

*

For the probability, however; that n or more events will oceur in the
interval z, P .5 we havedle summation

L .
O P)n.z= ZPm,x [18]
") m=n

The last equétion represents, for example, the probability distribution
of concerm &hen one tries to correlate the visual responses with the
quanta of radiant energy that are absorbed by the visual fluid of the
reting.s Ehmng brief flashes of light received by the eye. It has been

dby Hecht ? and his co-workers in a study of the operation of visual

hanisms at the threshold of vision. (See Fig, 14, Chap. 1L.)

Similarly, —dPy./dx of Tq. 17 represents, for the cmission of
a-particles from a radioactive specimen, for example, the frequency dis-
tribution for time intervals between successive a-particle emissions.
Fig. 4 represents data of this nature obtained by Halliday.* Offhand,

'Fry, Thornton C., Probability and Tts Enginecering [Vses, New York, D. Van
Nostrand Company, Ine., 1928

* Hecht, 8., Shaler, 8., Pirenne, M. H., Science, 93, 585 {1041}.

# Halliday, D., Ph.ID. thesis, Univemity of Pittsburgh, 1941,
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on the mere basis of randomness, one might be inclined to assume that
the normal frequency distribution or & close approximation to it would
apply there. Buch, however, is far from the case.
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Fi6. 4. The Poisson Bistribution of Eq. 17 as represented by the frequency distri:
bution of time irgt(sivalls between successive receptions of a-particles fron:! a radio-
active soureg, 4% ‘wbtained by D. Halliday, who mensured 3133 pulse intervals.
The hori-zonr%l “portions of the broken line represent observed probabilities .fo:
half-second mtervals expressed in terms of reciprocal seconds. The unbroken line
represeriteithe expectation according to Eq. 17 for a mean interval of 1.169 sce.

(=]
™

Probability Coefficient for the Qoeurence of a Pulse interval
of a Given Duration in 1/see,

6\]’sﬁstiﬁcan:ion for Assuming the Normal Law. In view of the above
limitations, one must consider a new situation carefully before ever
4ssuming that the normal distribution law applies to a series of measur.cd
values that has been ohtained. But now, having concluded in a partic-
ular easo that the normal distribution law or a close approximation is
reasonable, what shall be done? Let us examine more closely what is
Meant, by the statement that the normal law governs a given djStTibu'
fnion. We mean by this statement that as the number of ohservations
ncluded in the sample distribution inereases, the probabilities of oceur-
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rence of deviations from the mean approach cver more closely the valyes
predicted by Eq. 1. An actual sample distribution with a finite number
of observations never indicates such predicted probabilities. Instead,
it may be quite skewed, or even two-peaked, and still the infinite parent
distribution might conform with the normal law. In such cases the
deviations from normality would disappear if it were possible or prac-
tical to add a sufficiently great number of values.

Referring to limitation 1 above, a distribution of & finite number of
readings need not be perfectly symmetrical to be considered nmm{ml,
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L 4 N
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a < 3
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a J{ sx\&
W . ‘bria"t'y.org.in e
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68 \ 0 g2 J4 76
N Wavelength in Angstroms

Tonization Current
b

Fie. 5. The Compta{l ci’fect an illustration of a two-maximum distribution result-
ing from the jriclisions of {wo physically separate, but nol separated, phuton
distribution, J}Sraph shows unmodified, P, and shilied, S, Mo Ko radiation
scm;‘cu::l'ed‘kqr garbon, (Compton, A, H., Phys. Rev., 21, 715, and 22, 409, 1923.)

(‘onversely, it is admitted that the infinite parent distribation corre-
ﬁndmg to an observed apparently normal distribution may be non-

mal. The same argument applies to limitation 4. It happens,
especially when the precision indexes are relatively small, that the
distributions of such related things as the diameters, arcas, masges, cte.,
of a group of bhearing balls say, may all be effectivcly normal, even
though each distribution is somewhat skewed, and even though only
one of the related infinite parent distributions can possibly be normal,
even for a restricted range,

Limitation 3 is not an important one, since relatively few distributions
have more than one maximum ordinate, and, as stated above, some
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two-peaked distributions may actually be samples from infinite parent
distributions that arc normal. However, when the parent diséribution
follows & nonnormal law, proper tests, such as the chi-square test to be
discussed Inter, may disclose this fact and thus prevent drawing false
conclusions by assuming normality. It is interesting that in some cases
two maxima urc obtained as a result of the inclusion in a single distri-
bution of two sets of dissimilar valucs, each of which vields a distribu-
tion with one peak normally when taken alone (Fig. 5).

Despite its limitations, the normal law, in addition to being eapable
of represeniing distributions that are believed te be normal, is alsgd
capable of represenling sufficiently well many distributions which, from,
a priori consideration, are known to be nonnormal. Adding to this, the
fact that the normal curve is the simplest to fit, we feel justified in ‘adopt-
ing the normal law where skewness, flatness, and other chatacteristics
do not catse too serious deviations from the normal distribution.

At any rate, for one reason or another, it is custdfadry to assume
that the measurements of a quantity follow the petmal distribution
law when the least count is small in comparison with-the variations from
the mean and the distribution is not too obwiefisly nennormal. On this
basis, a considerable superstructure of @réé;tinent of dats has been
founded, including that in the succeed\iagﬁémmg%%ﬂ;?}gq,gmk.

7. Qualitative Tests for the Normal\Distribution. Tests for applica-
bility of the normal law may be cladsed as cither quantitative or quali-
tative. The former are the mofizdefinite in their interpretations, but
they are rather involved and ;te,}}.ious to carry through. The qualifative
tests are simple, but often difficult to interpret. They are of value,
however, in exposing dlistributions which deviate greatly from the
normal. Two tests ndllbe described: (1) superposing the normal curve,
and (2) plotting omprobability paper. )

{a) Sup(;rpa\im’g‘ghg Normal Curve. A good idea of the normality of
a distributiontaay be obtained by superposing on the graph of observed
values theSdomputed normal distribution which best fits. For the
demt}ns’gi'a?t-ion of how this may be done, we use data by Birge.! Sec
TableNW and Tig. 6.

Normal procedure, deseribed carlier in this chapter, leads to

¢ = 3.60 X 107 mu [19]
% = 5.00 X 103 my [20]

'Birge, R. J., Phys. Re., 40, 207 (1632). The data of the table were reported to
the authors hy private correspondence.
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and for the 500 obscrvations

. ] residuals 0038 _,
4o = 500 residuals X gz = 55.4 m g M0 Fmmt”

(21]

TABLE il

Dara BY Birae ! Smowmve, For 500 OBSERVATIONS OF A SPECTRAL LINE, THE
FrEqueNcY OF QCCURRENCE OT VARIOUS RESIDUALS, &

By chance the mean was such that all residuals could be expressed precisely in termns
of a tenth of the least count, 0.0010 my, of his ipstrument.

Observed Compuled .
’\“\ —
l £\ -
. . . 2 N\ e 1
zin N.o. of zin No. of ha . ALY residuals
10~ mpu { residuals | 107 mu | residuals Yhe 10%3 Mg ="
' A" g
+0.1 62 - 0.9 53 0.0 | 0.5842 0.00 55.4
11l o4 | —1el s2 (o2 | o0 | 102 | 532
2.1 45 - 2.9 30 0.4 a0\ 4808 2.04 47,2
3.1 44 - 3.9 a1 QBN -3936 3.05 38.6
4.1 34 — 4.9 22 08| 2075 4.07 2.2
5.1 20 ~ 5.rwhw.dBraulifitgr drg 12076 500 | 20.4
6.1 16 - 6.9 1L 1.2 .1336 6.11 13.1
7.1 3 - 7.9 8 | 14 0794 7.13 7.8
8.1 4 — 8.0 [ 1 1.8 0436 8.14 1.8
9.1 3 —g.94N"1 1.8 L0221 9.16 2.2
10.1 1 -10.8) © 2.0 0104 | 10.18 1.0
13.1 1 —1400 0 2.2 0044 | 11.20 6.4

Continuing, Weay compute values directly, using Eq. 21 or make
use of Tablq\{})f Appendix 2, for whose use residuals must be expressed
in terms){lfh or as hx. For hx = 1, i.e., for x equal to 1/h or 5.09 X
102 mypwe obtain for the relative probability coefficient, gy, the valie
0.2076% From this in aceord with Eq. 22 of Chapter VI, namely

) alh
\ ya:zyhx%

we obtain, as a corresponding value for y,,

= hyhz [22]

500 residuals

Yn = Mo = o 10— mp 2070
residuals regiduals
= 082 20 09076 = 204 ———— [23
10 mﬂo 076 = 204 5= — [23)

1 [dem.
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This value plotted in Fig. 6 at z = +5.09 X 10 mu and z = —5.00
X 107% mp yields two points of the desired superposed normal frequency
curve for that graph. Other points may be obtained by seeking simi-
larly (the last half of Table I} values of y. corresponding to hx values,
such aus 0.0, 0.2, 0.4---1.2, 14, ete. In all cases the factor 98.2
residuale /1072 my serves in obtaining the appropriate yn.

That. the superposed curve of Fig. 6 fits well is evident. The ensemble
of data, as shown by figure and data, is thought, in comparison with

— N
g &0 2 S
E=3 ’\
=
=] 4 N N
(%]
[ / \" Cf
54 =
g o
g )
3 / ‘F.‘
£ "..x
cm 7 SHEN
g ’:' ]
= o/ wmwtdbraulibral\g,or in
= E ™
- / NY \
‘j' 5 b\k_
Q e - -
-12 -8 ry 4 8 12

N 0 _
JResiduals, #,in 10 3 g
Fra. 6. Graph showing the frx;ifefnéy distribution of the residusals for 50'0_0bserva_
tions of a spectral line as gbtaified by Birge (Table TT), and the superposition of the

best fitting normal frequeney curve.
\X

other cxperimet;t@lNat-a, to conform to an unusually high degree with
the normal ditribution curve. o

() Plotting the Ogive Curve. An alternate mothod of plotting a distri-
bution guive, Galton’s ogive curve, is shown in Fig. 7. In this curve,
the gumPer (or percentage) of ocewrrences of magnitudes either less or
greatef than = is shown as a function of z. Plotting the normal curve in
this manner would be equivalent to plotting, as a function of z, the
integral Y, where

* h Y e :
¥, = Iwyxdx = m—_./_‘j dx [24]

or, of course, ¥y where

Y2=f yxdx=1"—Y1 [25]
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Thstribution data, however, are frequently presented in the form of
finite values of AY to vorrespond to f{inite increments of x, Ax, which
are usually constant throughout. We then use the surnmations

Yia = i Ym A [26]

=1
and
N
. N 1
You = E Ym AT [27!
m=n-+1 2\
500 pra—— B
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Residuals, in 107 s u, of Measurements of a
Wavaelength from the Mean

Fie. 7. Gallon’s ogive clrve for the distribution of Table 11, All of the plotted
points should be shifted to the right by 0.5 X 1073 myp.

in which ¥, and Y, represent numbers of readings. They are usually
plotted as functions of z,, or mAz. Often in tabulations, the values
listed for the independent variable arc central values for the succceding
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least-count intervals, To secure passage of the curve through the zero-
residual 509 -frequency point for a normal distribution, ¥y, and Vs,
may be plotted as functions of  + Az/2 and & — Az/2.

Though the ogive curve posscsses some advantages, it is hardly suit-
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Fra, 8, \Braph of frequency distribution of Table II plotted on probability paper.
) .é:ll'f)f the ploticd poinis should be shifted to the right by 0.5 X 107% mp,

!

Percentage of Measurements with Residuals Egual to or Less than the Stated Valy
‘I

{BIQ"}LS a test for normality, since generally departures from normality
are concealed rather than cxposed. 1f, however, the data are plotted
on so-called probability paper rather than on rectangular c-c_)ordina-te
papcr, the resultant eurve possesses all the advantages of the ogive curve
and in addition provides a convenient test for normality.

On probability paper the scale showing the number of occurTenecs,
expressed as a percentage of the total number of occurrences, is dis-
torted so that the distances from 509 to all other per(:ﬁntages are
proportional to the corresponding values of z/e. The seale is sym-
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metrieal about the 509 coordinate line, and the integrals ¥, and ¥,
or the summations ¥i, and ¥, In case the data follow the normal dig-
tribution law, plotted as functions of x on such coordinates vield straight
lines. Hence, a plot showing the relative mimbers of observations hav-
ing values less than (or greater than) x; as a funetion of x, will deviate
from u straight line if the distribution deviates from the normal. Fig. 8
shows the application of thig test for normality to the data of Tahble I1,
Deviations from normality arc revealed though perhaps not as clearly
ag in Fig. 6. However, insofar as ease and time of construction are
concerned, this method of testing is mueh the superior. ~

8. Quantitative Tests for Deviations from Assumed Distribution$
When u distribution of data is believed, for theorctical reasons or t)‘ish%l-
wise, to follow some recognized law of which there are many, it{pay be
judged by its closeness of fit to an equation following that lawa " Often,
however, many distributions are without theoretical or eﬁén empirical
backing. Then particularly the deviation from an assdimeéd normal dis-
tribution may be sought. There are two tests knewn as skewness,
represented in magnitude by +/8,, and ﬂatncss,,zrc%‘resented in magni-
tude by 82, which arc used to indicate dmiaﬁo\é from the normal fre-
quency curve.  One test, the chi square, x% by be used whatever the
distribution. The chi-square tosf i a%%%_ggggg_m]portant and much
morc used than the other tests. )

Skewncss, or asymmetry with respect to the distribution about the
mean of the ohserved values, Ob’EViOiin)’ cannot be revealed by the sum
of the deviations from the meau, for that is zere by definition, nor by
the sum of the squares o B;Q(*h deviations or of such deviations raised
to an even power sineghin ‘such squares or even powers there are 1o
distinctions hetween (positive and negative deviations. The sums of
odd powers, howeyérpdo make such distinetions and will indicate asym-
metries. Arbltra.nlv the sum of the third powers of deviations expressed
in terms of «%e standard deviation ¢ in cach instance is used, The
defining equamon used is

SN (X =X)® .
of Vi = 2E ) [28]

| e

In easc the data are represented by a eurve which has been drawn, the
following cquation may be used instead.

-
f yatdx

[29]
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Obviously +/8; is zero for a strietly normal distribution. How signifi-
cant any particular computed value may be is only comprehended by
determining values for various asymmetric distributions, That for ths
distribution of Table I is +0.013; that for the moleeular speeds of the
niolecules of a gas (Fig. 1) is about 21,

Flatness, the distortion represented in Fig. 9, on the other hand ob-
viously cannot be represented quantitatively by any odd power summa-
tion. Nor will a second power summation of deviations expressed in
terms of the standard deviation suffice since when so expressed all such
summations, however flat or skewed, yield ¢ by definition. A fourth
power sumimation will nevertheless show
up sueh characteristics, In accordance
therewith, flatness 85 is defined by

s
g = 2E A [30]

R

AN
o\

for ungraphed data, and by

+-e2 /
5 .
f yride W\ Fia. 9. [Hustrating the distortion

o

Bo = ——F7s [31] called flatness. A represents the

ot ydz v\arj*.:{\i\:'_dbraulilt:ll!z!’lih%l_gﬁligt_lrRou.tion ourve; B,
_ AN that possessing fiatness.

L
™

for graphed data. \\J

Tor a normal distribution 8s is 3. Evidently distributions may be
more flat or less flat t-]lgzm\that which is normal. Owing to the increased
offectiveness of large walues of y accompanying large values for « in
viclding large valles for a fourth power summation, it is cvident that
the 8, for curve B of Fig. 9 will be less than 3.

Difforingyyae’ alveady noted from the two tests just described, the
chi-squaré tést may be applied to determine the deviation of an actual
distribittion from any assumed law for the infinite parent distribution.
In tA%% case, one considers the probability that a random sample, taken

wf(‘nr\n the infinite parcnt, shall differ from the assumed law by the amount
\jound. Though some prefer 0.05 as the limiting probability, it is gen-
erally held that a sample is satisfactory if the probability of its cccur-
rence is 0,01 or greater.

The function x?, as defined by Pearson, the originator of the test, is
bused on & comparison of observed, fo, with expected, f., frequencies of
occurrence of individual readings, and is given by

2 (fo __ff)j
=2, 2]
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Tn the application of Eq. 32, it is usval to array the observed measure-
ments in groups, to each of which a certain specificd range is assigned.
Thus arranged, the number included in any one group is taken as the
observed frequency of occurrence for the corvesponding group range.
The ranges for the various groups of a distribution need not be the same.

Once %* hag been obtained for a particular set of data, it remains to
determine what the probability of its oeecurrence shall be. For this

// 7//// ) // S
\— S
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/
e

28
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Fig. 10. Showing ch.i-squam}‘nbabi]ity, P2, Tor goodness of fit of a sample dis-
tribution as a funetion ef %and of #”, the number of groups of data less the number
of impoesed cunditiona N\
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purpose P('araon\l’has computad vxtvndvd tables of prohability of oecur-
rence, whjchﬁpend not only on x2 but also on #/, the number of groups
selected légs the number of imposed condltlom 2 One imposed eondition
is that} t}Le total number of items entering x® must equal the number
ente\u@ the various groups. Other conditions somctimes imposed are
those ascribing to the infinite parent a distribution deseribed by con-
stants, in the normal case, the X and ¢ determined from the sample. In
this case 7’ beecomes three Jess than the number of groups. Sometimes
still other conditions are specified and should be taken into account. A
graph giving chi-squarc probabilities as a function of x? and »’ is given
L Poarson, K., Trans. Am. Math. Soc., 31, 133 (1629). '

2 Fry, Thornton C., Probability and Iis Engineering Uses, p. 204, New York,
D, ¥an Nostrand Company, Ine., 1928
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in Fig. 10. (Secalso Table TV of Appendix 2.) Application to the velocity
of light measurcments of Michelson, PPease, and Pearson? is shown in
Table ITI.  On the assumption that the infinite parent distribution is

TABLE II1

AppricaTion or THE CHI-3qUARE TEST TO THE VBLoaTy oF Ligar
MrasursueNTs or MicasLsoN, Prass, aNp Prarsoyw

From 233 determinations & weighted average veloeity of light of 299,773.85 km/sec
was obtained; ¢ represents the excess of a measured veloeity over 209,000 km /sce.
A frequency, fe, for a specified range represents the number of determingtions
falling within the range, and f; represents the number expected on the basishgf the
given X and of a & of 14.7 km/see. (The present authors are greatly Qagbted to
D, . Q. Adams who pointed out that the procedure of the first, prmtplg, wherein

Fu wag taken az a sum of welghts, was in error, and who has suppliethkthe material

here presented). R s
Ry
Range of ¢ \ {fe — fo}?
in km/see. Fo fe e i")‘ fe
— : Vo \ud
<741 3] 2.25 2075 0.25]
74148 714 3.04;11.24 | ~R.96: —2.76 5.15; 0.68
46 -50 4J 5.95]  wwsihath-duf ary.orglin 0-64[
51-55 8 10.42 0N 4+ 2.42 © 056
56-60 17 16.24 & | — 0.7 0.04
6165 23 22.60, — 0.40 0.01
6670 29 28 06 - 0.4 0.03
71-75 45 310 —13.91 6.23
76 80 40 K 80.73 — 9.27 2.80
81-85 17 N\ 27.11 +10.11 3.78
86-90 W, 21.37 + 5.37 1.35
91-95 LI 14099 + 4.99 1.66
00 | N5 . 9.39 + 4.39 2.06
sol-05 U072y 0 sl | 4327 g, 2.038 ) a8
06- 100N 3 262" — 0.38 ) 0.05
38100 4 1.86 — 2.14 2,46
N\ P _ -
<\: ) ‘ 233 233 x? =29.10 18.52

For ¥ = 20,10 and n' = 13, Px* = 0.005. For x* = 1852 aud »’ = 8, Py = 0.018,

normal, the value computed for Py: indicates a rather small probability,

0.005, that another similar set taken at random would deviate as much

ot more from a normal distribution, However, if the grouping, which

is cntirely arbitrary, is changed by collecting the three lowest and the

four highest groups of the table into two larger groups, as indicated by
t Michelson, A. A., Pease, F. G., Pearson, F., Astrophys. J., 82, 56 (1935).
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the brackets, a recognized procedure where the #'s of adjacent groups
are small, the computed value for 2 is larger, about 0.018. On the
other hand, Fig. 11, in which summations of weights rather than num-
hers of determinations arc graphed, suggests that these low probabilitics
may indicate that the present distribution has a flatness (kurtosis), 3.,
less than 3, as has Pearsons’ Type VII distribution, Obviously, these
. measurements are much less normally distributed than are Birge’s spoc-
tral line measurements. (¥ig. G and Table 11.)

\
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Number of Weighted Measurements Falling Within

Fig. 11. Disiribution of measurel;pééts of the velocity of light made by Michelson,
Pease, and Pearson (see Tahld I11) grouped for velocity intervals of 8 kmser,
The broken line represents "hchusl measurements. The smooth eurve represcits
the distribuiion expcct(?gi Elad the meusuretnents followed the normal law.,

N\
9. Summary. AFh¢ methods for the quantitative evaluations of A,

7, p, and ¢ aregleseribed in Fgs. 6 to 9.

A short Wé‘h"od for computing a mean X and the precision index «

for a set ofi readings consists in assuming an approximate mean, X',

and tht\a’@‘abplying the two following equations:

) 4

n ZX - X

n

£=MX~X¥_[MX—Yq2

X=X [11]

. - [12]

Chauvenet's ecriterion, intended to eliminate from a set of readings
the effect due to single readings exerting undulylarge effects on the means,
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gtates that a reading should be rejected when it vields a deviation from
the mean such that the probability of occurrenec of deviations of that
magnitirde and greater is less than 1/2n, where » is the number of
readings. With Z ag the limiting minimum deviation for rejection, the
criterion takes the form

h TE e 1
1 - .[Ji = 1 —_ = —hia? = — /]
\/‘n’ [g ¢ d 2n [1 ]]

The limitation of the normal distribution law is discussed in some
detail, but il is indicaled that it is customary to assume that mostegets
of measwements follow that law and that a considerable superstriocture
of precision treatment of data hasg been built upon it ¢\

Qualitative and quantitative tests for the goodness of fit of fhie normal
diztribution law are degeribed. These included (1) sup(z\q‘)'f)’sing the best
normal distribution curve, (2) plotting the ogive curve©n ordinary eross-
section and on probability paper, (3) computing s,ke}vﬁess and flatness,
and (1) applying the chi-square test. Chi SQUAey ¥, is given by

2_2&@ [32]
T NS

of which f, and f. are observed W&P@ﬁ'%r@?ﬂ%@%@%‘* of oecurrence
of values as grouped shout arbitsarily chosen mean” values. With x=
computed, one secks, from a table or from Fig. 10, & probability of oceur-
rence, Py, of the given sgiof readings as a function of ¥* and #’ the
number of groups of reagdings less the number of imposed conditio‘n.s.. A
P of 0.01 or more is\ﬁstlally considered satisfactory as a probability.

P\% PROBLEMS
1. Find appré imate values of p @, a, and 1/k for the data of Fig. 1, Chapter \-".I.
2. GivchSbit the times recorded By 36 chservers as the interval for a eertain

phcnumg!ﬁo\l were digtributed as follows:

*

P 3 obsérvers recorded 32.0 sec
'"‘; o/ 7 7] ] 2.2 «
\ / 12 L1 it 32‘3 13
6 ' “ 32‘4 [
6 & L1 32'5 £
1 ¢ i 32.6 “
1 111 (1) 33‘0 1]

Compute the mean, g, a o, and 1/k  Should the last reeorded observation be
eliminated?

8. Plot the dala of Problem 2 and draw on the same shect the curve of the normal
digtribution law which has the same modulus of precision as that computed from the
data.
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4, Givern that the distribution of diameters, 13, abont their mean, Dy, for a set of
bearing balls, all of the same density, is
ho
= "B -np2o—pye
¥p N
show that the distribution of their volumes, ¥, about the volume, ¥y of a ball whose
diameter is Dy is given to a first approximation by

hy 2V — Va\ —npnv-ves (1 2 V—lro)
¥y = —= 1 —- @ ¥y

3 ¥

9 !-a’h
hy = | —— A\
4 |:91rVo‘;:| b '\“>
"N\

B. Ploi curves like those of Tigs. 6, 7, and 8 to represent the distrihutimi‘ﬁf data
given in Table L. Whal is your conclusion regarding the sensitivity of the varions
methods of plotting in showing variations ol distribution eurves fronf fermal?

6. The mean annual temperatures of Pittsburgh reported by th\T 8. Weather
Bureau lor the 71 years, 1872-1942, arc

of which &y is defined hy

Ranges of Mean Annual Temperature Number of XE?}# of Oceurrence of

in °F Means “’Tll‘.h{n the Specified Tanges
48.8-49.2 PN\ 1
40.3-49.7 A 2
49.8-50.2 www.dbraulibrary .org.in 1
50.3-50.7 A\ 3
50.8-51.2 AN i
51.3-51.7 ~ 8
51.8-52.2 Q 8
52.8362.7 , A0 9
52.8-53.2 _ A\ 19
53.3-63.7 £\ 10
53.8-54.87," 7
54.3-51. 5
54, sﬁw:) 0
‘5\ —5u T 1

Make graphs, of the duta similar to those of Figs. 6 and 7. Determine values for the
mean a.nnua.z bemperature and tor p, o, und 1/&.  Judged from the distribution given,
what j&’ t‘h&pmbabllltv that the mean temperature of Pittsburgh for the coming year
will fal\jsetween 49.5° F and 50.5° F?  What are the limits of the smallest rdnge of
temperature within which that temperature has & 509 chance of oceur ring?

7. Using Fig. 10 and Birge’s data as recorded in Table 11, determine the values of
o and Py2 which apply. Choose the limits for the various frequencey ranges such
that at Jeast 10 residuals will be ineluded within cach range.



CHAPTER VIII

MEANS AND PRECISION INDEXES OF UNEQUALLY
WEIGHTED MEASUREMENTS

1. Introduction. In the preceding chapter, we derived cxpressions\
for the precision indexes, (1/h)., as, @2, and p., of a single X-reading
choscn at random from a serics of cqually precise readings assumed)to
obey the normal distribution law. We found, among other thlng\q that
these indexes tell us the likelihood that a single readingwll’ deviate
from the mean of the series by a certain amount. Grantédihis, it now
becomes desirable to know the precision indexes of tlw’r}man itself, i.c.,
the hkelihood that the mean will deviate by a certain amount from the
so-called grand mean, the mean of a seties of leﬂaﬁv determined means.
To know that an individual reading of a speolﬁed length has a probable
error of 0.05 mm is worth while; to knowy that the mean of a series of
length readings has a probable error @f d%n 002, Q;'yl% rgé‘ﬁ{!rally more
important.

Some readings of a series may, bctause of conditions, be more reliable
than others. It is then customary to assign weights to the individual
readings.  Usually such asmgned weights are arbitrary, though not
without reason. Often e: assignments are in accord with some plan.
If one reading is congidered, roughly speaking, twice as reliable as a
second, respective_welghts having the ratio 2:1 may be assigned;
e.g., weights of 4 aga 2, or of 1 and 14, ete. For a group of such read-
ingg, as for oneof equally reliable readings, it is desirable to obtain the
most pvob&bﬁiﬁiean and its precision indexes.

In thi%éﬁapku we first derive an expression for the mean of a series
of welghted measurements. The precision indexes of the individual
w ergbt‘aa readings are then obtained, and their rclationship to the arbi-
trary weights is pointed out. We next consider the mean, whether
obtained from cqually or unequally weighted readings, as a particular
kind of weighted reading, and derive its precision indexes. A short
method for computing means and precision indexes from unequally
weighted readings is then presented. TFinally, we consider the problem
of combining scveral mean values of a quantity into a grand mean and
its precision indexces, first for the case where the intermediate means
are consistent, and then for the case where they are inconsistent.

189
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2. The Mean of Weighted Single Observations of a Quantity, In
what follows, we assume that a reading X; having a weight w, is equiva-
lent to 1w, readings of unit weight whose mean is X;. This does not
exclude fractional weights, since weights are only relative; the question
of what might be meant by 0.1 reading of unit weight iz frrelevant.
As will be shown, it is important to recognize that these wy readings are
not individually assumed equal to X, and that only their average pos-
sesses that value,

Let X;, Xy,---X, be a series of measurements having weights wy,
Wy, " » - Wy, respectively. By our assumption, this series is equivalegtho
a pa,rtu'ular serics having {(wy + wy +- - -w,) readings of equal plecmon
The mean of this new series, and hence also of the unequally? \‘mghtnd
serics is evidently M

w X + woXg+ - - - WnXn E-w)é.f »

X= = {
w1+ we + - Wy E@

[1]

3. Precision Indexzes of Weighted Single .Observations. Let X,
Xo,---X,, be a series of observations hav mg,\ nown weights, aw,;, i,
- Wy, but unknown meduli of precmon le, ha, Ry We again obtain
an expression for the mean of this qemesr ‘but this time by the method
diseussed on page 161, m@kﬂﬁbm@@*ﬁm@‘\%ﬁable pseudo-mean, X'
As in Chapter VI, we seck the X"’ possessing 4 maximum probability
of oceurrence for ’rhe observed" data. Assuming a normal distribution
wherein z;, #y,- - - &, are th¢'deviations from X' of Xy, X5, - - X, meas-
urcments having 1eastﬁ({§zi1ts of Az, we have

(AﬂP)l,:Z,?,,»--n = ﬂpml X Ang X AP::“
)

\ 1\ g2 B2
e e A A P
£ \/7r

~ b
) O = a maximum
0!;“1{1 ;fdéé.rithmic form
ln\(z&“P)l_g,g_...n = —nln (/7)) + Zlnk — (x4 - - hnle,d)
+ nln (Azx) [3]

= a maximum

Differentiating with respect to X", we write

n dxl d&n )
dX” Ln (4°£)] = (h gt e dX) =0 [
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Since
d:tl — __[_i'!2 - —
p— _.”_”'_ ] !5]

we have as the condition for the maximum ! probability of occurrence
of the ohservations

ity I hePaat - 2z, =0 [6]

Representing the value of X", eomputed in accord with Eq. 6, by X,
we write

Sk = Sh(X — X) = SK2X — XZh? =0 A

or O\
- ZKX o\
X=55 (O s

- 4 ’}5
Comparing Eqgs. 1 and &, remembering that the Values@f k are inde-
pendent of each other, we find £% proportional to w,"o-}\

h]_ _T{J_]_ ¢ 0,\\.;

= X 9
hg Wa ‘...\\' { ]

The relative precision indexes for the upéq‘ually weighted readings are

therefore given by wyz"{r‘d braulibrary.org.in
1 &3 N
ho_p G o e [10]
1 PN a0z wy
P '\“.}

The precision indexesdf weighted single observations of a quantity vary
inversely as the sqlifwe roots of their weights. Letting %, ¢, and p, in
the further dik‘s(;-kk‘-isif)n, represent the moduli of precision for an observa-
tion arbitr: il;\'?}ixssumed to have unit weight, we obtam from Eqg. 9

O 1
Ay 1__r [11]
\\: “ NG
F
g = 2]
1 x_wl
py = —2 [13]

g

! Thet Eq. 6 represents a maximure rather than a minimum is shown by the
standard procedure of differentisting Eq. 4 to obtain ¢%/(dX")% a quantity which is
found to be essentislly ncgative.
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We may now assign sbsolute values to the precision indexes of the
uncqually weighted observations X;, X,,---X,. Wo merely replace
the various A% of Eq. 3 by their equals as given by Iiq. 11. There
Tollow

In (A"P)yg,...n=n%In Ptz B +nlnk—h2Zwe® 4 nln (Ax) [14]

n
w

= a maximum

d 7
7 [In (A"P)1 4 ...0] = 3~ 2hZwr® = 0 [{5]
n ¢\ :\ .
W= I ypr? '\ N (16]
Hence, for the observation having unit weight, n"w“
s S\
L _ PR : (s
hy n ) !
x I
= — 1 > ’HIIII'&_%{}.xi [181 1
T Ve OV :
and www.dbl'auljﬁi;al'y_o’zg__ill_ )
: S npd
px = 0.6705= 0.67 \.*%’-4 [19]

By substitution in Eqs. 11 $0M3, similar expressions follow for the bre-
cigion indexes of obher.o@czi'vations of dilferent weight. Hgs, 17 to 19
differ significantly from}he corresponding expressions derived in Chapter
VIT for observationssell of which are of equal weight. In place of the
Zw that one n}ighf offhand expect in the denominators of these cqua-
tions, theory”\sgl}o"xxfs the presence of a.. This is the evidence for the
caution given-above when stating that a reading X, with weight wy 18
not equivalent to w; identical readings X, all of unit weight. We may
now ﬂl@sﬁmte the statement that reading X, with weight 1wy eannot be
saconsidered. Tn Table T are presented three groups of readings. The
first reading, 43, of group 1, with a weight of 5 is replaced in group 2,
in accord with the faulty assumption, by five readings of 43, each with
unit weight, and in group 3, in accord with the probable correct assump-
tion, by five readings, cach of unit weight, whose mean is 43. It is to
be noted that these five vary among themselves to about the same cx-
tent as the remaining five which are assumed throughout to have unit
weight. 1t is secn that the computed values for ¢ for groups 1 and 2
! See footnote on page 167.



PRECISION INDEXES OFF MEANS 193

arc necessarily different, whereas those for groups 1 and 3 are essentially
alike, in conformity with what theory suggests.

4. Precision Indexes of Means. If the reading X, with weight w; is
equivalent to w; readings whose mean is X, then the inverse is alse
true: n readings of unit weight whose mean iz X are equivalent to a

TABLE 1

frowmwa Toat a Rmapiva Xy wiTe WeresaT wy Ts Nor EQUIVALENT To w; HEan-
mNGs Kacn HaviNg tae Varoem X,

Crroup 1 Group 2 Group 3
X 2w I wr® X w T wr’ X | ow x \ N Vo
| LY
LAY
43 | 1 |0.5| 0.25 | 40 | K\.'2A5 6.25
3 L |05 025 | 43N 0.5 0.25
43| 5 |05 1.25 ({43 | 1 |0.5| 0.25 | 45NNT | 2.5 6.25
43 | 1 [0.5] 025 LAM 1 [1.5] 2.25
43 | 1 |0.5| 0.25¢/W3 | 1 |0.5] 0.25
39| 1 i3.5]12.25 |30 | 1 |35 ;z,:z5"g 30| 1 |2.5]12.25
4411 "1.5| 2.25 |4 | 1L 1.5 Wﬁ 25 L4 |1 1151 2.25
211 05| 025 |42 1 |00 byaulibpary.orgiy 5 | .25
45 1 25| 626 | 451 1 [ 25| 6.25 |45 | 1 |2.5| 6.25
40 1 |2.5| 6.25 | 40 | 15| 6.25 | 40 | 1 |2.5| 6.25
N O 2850 42.50
Twrt = 28,50 ¢ \J .
X —42.5 | A 42.5 4.5
T 2.1
N A L7
s\ _

single readi szivhose weighl is #. Hecnee, in view of Tigs. 18 and 19,
the precisiénindexes of a mean obtained from n equally weighted
readings-are given by

\M\; (1)_’ _ (I_la)x [20] 1

h

o [21]®
3¢ o -

Vz:?
px = % = 0.6?0’? = 0.67 ) ) Bt'c- [22—| !

! Bee fontnote on page 167.
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where (1/h)x, ox, cle., represent the precision indexes of an individual
reading of unit weight,

For a mean, X, obtained from uncqually weighted readings, similar
reasoning allows us to consider X as a single reading with the wright
Zw. Henee for this case,

_ X _ ;Ew:zrz
* TV Vozw

[23]"

px . i | ST N
Px = — == = 0.67ox = 0.():\/-— , efe. f24]1
V2w nZw O\

NS ©

The probable error of the mean, pg, is the quantity whieh™physicists
gencrally accept as a measure of the accuracy of a repgi‘fiiﬂ result. It
predicts that of a great number of similarly detegt{ihéd means, just
ono-half should normally deviate from the grand'dhean by an amount
greater than py. O

With weights assigned according to Rq. L0 i usually happens that
the numbers taken proportional to (1_/'p)?.th}rx out to be awkward. In
such cases, one uscs rounded values for €he w’s with seldom more than

two significant digits. SO AnkeF R s P2 © pg 1o - - varying as
3:40 18 - we might well use,'wi'&: Wy Iy - varving as 1100 :6:
160 :--- rather than 1111.1136:25 : 156.25. The departures from

theory introduced thercby at®not only very small but arc quite justi-
fiable in view of the genqga;l}thenry itgelf.

5. A Short Method\{m"' Computing Means and Precision Indexes
from Weighted Obsetvations. Just as in equally precise measurcments,
much time and lahér may be saved by using a short method for com-
puting X, oy, ’edic.,’ for weighted measutements. Proceeding as on page
168, selecting\¥’ as a convenient approximate mean, and representing
X - X' by&] we obtain

al

) L 2elX - X)

o) X=X+44a=X — = [25]
\; oo Zw
and
Zuwr®  Sw(X — XY — A%Sw
+2 = == 96
7x nZw R [26]

The computations are conveniently carried through in tabular form
as in Table TT. As a check, the caleulation of X and o ¢ may be repeated,
using & different value of X7,

! Bee footnote on page 167.
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TABLE 1I

[ILTUSIRATING & SHORT METROD FOR COMPULING X AND oy FROW WEIGHTED Damra,
TOGETIIER WITH A CONV‘EN’IEN’I‘ CHECK

X' =128 X' =129
X0 aw) : ) -
X —X'|ZwdX — X" 20,(X - X)X = X" Zuy (X = X'} (X — X2
— B e L |
125 2 2| -3 -6 18 -4 -8 320
126 3 5| -2 —10 20 -3 ~15 5.
127 9 13| -1 —18 i8 -2 —36 2
128 15 45 0 0 0 —1 —45 A\ 45
129 11 35 1 35 35 0 Oy ¢ 0
130 7 12 2 24 48 1 1l 12
131, 2 2 3 6 18 2 3 8
1320 17 1 4 4 16 3 3 9
_ AN
B0 120 35 173 LY -85 D22
i
A = =020 WA = — gy = —0.71

h73 — 1200207 &N R2s = 120(—=0.71)2

vX

- e braylibrany .or g,
X - 1284020 - 12820 vo X brogibrgmy o g oy

i

XENT %120 0 50 % 120
= {16 X‘\ = 0,16
pT = 0.67 X 0.16cA 011 px = 0.1

The data of Ta-blé 1T ave those of Table I, page 170, with arbitrarily
assigned weighs.~For the cqually weighted date, X and ox are found
to be 12838 0.21. Comparing these with the values from Table LI,
we note tifat the means are ncarly identical but that the og is appre-
ciably'sir'ih.llcr for the weighted data. This is & consequence of the
arbi{ﬁaﬁly greater weightings of measurements near the mearn.

The Grand Mean and Its Precision Indexes. The concept of a
grand mean ariscs when one wishes to combine, for instance, various
determinations of the veloeity of light, ¢, such as Michelson made with
8-sidled, 12-sided, and 16-sided rotating mirrors of glass and of steel, in
an attempt to determine the best value for ¢, and the probable error, p..

Let Xy, Xo,0 - X, be a set of intermediate means, corresponding in
the above cxample to determinations of ¢ made with (1) an S—Sidc_d
glass mirror, (2) a 12-sided steel mirror, etc. Let pw,, Pxs ' * ' Px, be their
probable errors. It iz assumed that these intermediate means differ
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because of accidental errors only. As has been shown, the weights of
these means vary inversely ag the squares of their probable errors, and
we may assign to them the arbitrary weights k*/px? & /px2---
k*/pz 2, where  is a constant and may be interpreted as the probable
error of & mean of unit weight. Further, as alse shewn saboy e, X 1
X;,--- X, may be viewed as the means of £°/py®, &°/px,”, - %*/pg,?
individual measurements, all of the same precision, With this under-
standing, KEqs. 1 and 24 may be used to obtain the desired mean and

its probable crror. They yield "
2 O
Ca(xE) R
- ZwX ( vy’ o\ o7]
T Zw - k2 . QO
px’
and . . . m;\g.‘
X v N7
PR =—== = = _ [28]
VZw / k ool
Vs NE
TNV px
It is seen that pg is smaller than the pfoBﬂﬂe error of any of the inter-
mediate means. www.dbr aullbrat y.org.in

In illustration, where (10.0 &0:2) gm, (10.2 £ 0.5) gm, and (9.9 %
0.4) gm are the 1nt{=rmedlat.e means, we have, corresponding fo an
arbitrary selection of 4 gm® for k2, the following results:

i“\\ 9 2
kv ¢ W k. Lt 'I"
X X px ~ X—
> Px px
10.Q, & 0.2 gm 100 1000.0 gm
1.2 0.5 16 163.2
95 0.4 25 247 5
O 141 1410.7 gm
NN
v _ 1410.7 gm
y™ X = — = 10.
QO i = 10.00 gm
2 gm

T=— =017
¥x \/141 7 gm

7. The Precision Index of a Precision Index. In reporting a precision
index, a question of concern is that of the extent to which it should be
expresscd. Should the number of significant digits be one, two, three,
or more, or should it vary with the case at hand? A common-sense
answer will usually suffice, and without doubt the number of digits de-



INTERNAL VERSUS LXTERNAL CONSISTENCY 197

pends on the case at hand. Obviously when » is large, more confidence
may be given to derived values for p and ¢ than when # is small, but
this rule is only roughly comparative. It would be highly gratilving,
however, to have a rule based on theoretical considerations 1f possible
which iz universally applicable,

One rule! states that the standard deviation of o itself is given ap-
proximately by

o

4, sl

Y 2(n — 1) [291

For example, if n =9, 1/ v/2(n — 1) = 1{ and thercfore cne néed, re-

cord not more than two figures in o and, at that, the second™figure is

barely significant. With » = 9 and the first digit 8 or 9, n@]ﬁ}‘niore than

one digit is needed.  Similarly for probable errors, the rju]e dtates thal
the probable error of p is approximatcly given by \‘

- 2 N . 20

P = \/2('71.)‘{*\ | [30]
More than two signifieant digits are rargalj{néeded for the proper expres-
sion of & probable error.  Where %fwmaz-fﬁ:\é%ﬂor—g_i]ﬁ approximates
1/14. Depending, in this instangefon whether the first digit of p Is
greater than or less than 2, wednay well [imit the expression of p to
only two or to only three d.iéiﬁs with the last rounded te 0 or to 5; c.g.,
p=>0420 p =0115.

8. Internal versus External Consistency. It has been mentioned, but
should be emphasizet\here, that when we consider the mean to be the
mogl probable v;;,l&e'ébt-a.inahlc from a set of measurements, we make
the principal agstenptions (1) that the measurcments are normally dis-
tributed, ax{if@') that they deviate from the true value because of acci-
dental ersGsonly. The first assumption is generally fulfilled to a mod-
crate ddpres and in any case can be tested. The second, however, is
ofter’ ihvalid . n constant error in theory, apparatus, procedure, cte.,
my/cause the mean to deviate from the true value by many times its
probahble error. Tt is impossible to deteet such a eonstant error from
the frequency distribution of a single set of measurements, or of a set
of means of moasurements taken under cssentially identical conditions.

Tor the cases thus far discussed, we can procced only as we have and
congider all errors aceidental. When, however, we wish to combine or
compare the results of several workers, using different methods, appa-
ratus, ete., we frequently find evidence for the occurrence of constant

! Rossini and Deming, J. Wash. Acad. Sci., 29, 418 (1939).
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errors.  Such discrepancies, for cxample, are shown in Bleskney's
tabulation, presented in part in Table [II, of the ionization potentials
of molecular hydrogen as determined by varicus obzervers,

TansLy III

A BEr oF INcoNsisTent MEAN VALTES FoR THE H: JowizaTion PoTENTIAL
A8 Mrasvrep B8Y VaRIoUs OBSERVERS

(16.5 + 0.5) volts (15.4 4= 0.1) volts
{17.1 £ 0.2) (15.6 == 0.1} 2N
(15.6 = 0.1) (15.37 = 0.03)

These values differ from cach other much more than theiiﬁ;?ubable

. 7N
errors indieate that they should. Constant errors must have entered
into some or posgibly all of the determinations. It xg{:ﬂ’ﬂﬂ be incorrect
to combine these means into a grand mean and eqipute its probable
error by Eqs. 27 and 28. We are thus faced wilh two problems: (1)
How may inconsistent means be combined be{ Into a grand mean and
its probable error determined? (2) When i/ %et of means to be con-
gidered inconsistent rather than conqlst(‘pt\

9. Testing Intermediate Means for{ Consistency. Several tests for
consistencey of means ha‘x‘rrg, Egraull?fz?g%?eoq" sgme more arbitrary than
others. Thus, for thmmochemloai meaqun‘ments, Rossini and Deming ®
propose that two means be cons:udvrwl inconsistent when they dilfer by
more than fwice the sum of\their standard deviations. A second test
for inconsistency compar %\the difference between two means, X, — Xy,
with the standard degialion, o, of that difference; and if the probahility
of oceurrcnee of a Mifference as great as X, — X on the basis of the
computed # Is fm{nd” to be less than 0.01, the mecans are declared incon-
sistent. The proecdure follows. It can be shown (Chap. IX) that the
standard dewjgtion of the difference of two means of normally distributed
sets of me\\asln'emmtb is related to the standard deviations of the means
by the &Quation

~O° o@-xp = Vox® + ox? [31]

\™
h’ith the oz, x,, determined, the corresponding bz is then obtained
using the relation
X, - X X, —
hy = =2 L Xl [32]
V2 (Xa— X3} \/2(%’ + ox.2)

Next in Table IT, Appendix 2, one soeks the probability of eceurrence
of an hx as great as that just computed or greater. The decision follows.

! Bleakney, W., Phys. Ren., 40, 497 (1932),
* Rogsini and Deming, op. cit., p. 416.
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If the computed hz turns cut to be greater than 1.83, the means are
to be declared inconsistent on this basis,

A third eriterion of inconsistency, proposed by Birge,! consists in
assigning the arbitrary weights #%/px®, +°/px?, etc., to the set of n
means and calculating the grand mean by g, 27, Then, on the basis
of internal eonsisteney, the probable error of 1 mean of unit weight is

Dinternal = k [33}
and on the basis of external consistency, applying Eq. 19, it is N
Tw(X — X)° A
DPexternal = 0.67 A —— & \f?}‘l:[ 2
77 y
Hence, if ihe set of means is consistent, the ratio R ™
— = m’\'\
Zw(X — X 2N )
Pexiernal — 0.67 \/(42"_) [35]
Pinternal nk ..\\:

should equal unity except for statistical flockuations. Birge assumes
that the ratio Peyenal/ Pintermal 1% Normally distributed about the mean
value, 1, with the modulus of pre@i\mm“b?’%&&wg})g%ﬁﬁty of aceur-
ronce of an obscrved deviation fromitanity may then bé found by caleu-
lating the corresponding value of! ha:

h.’;,;\'\/a (pext.r:.rnul . 1) [3[3]]
\\ - Pinternsl

and using Table I, ;&ppendix 2. If this probability is less than 0.01,
Le., hr > 1.83, tll‘(;‘rﬁeans are considered inconsistent.

Because of {He assumptions made in deriving Egs. 32 and 36, the
probabilit, -'\X:Za}ues obtained do not have the exact significance that has
been giyen ‘them. Nevertheless the tests arc useful for detecling in-
consigtencies in values obtained by different obscrvers.

10,"Combining Inconsistent Means. When a set of means is not con-
sisfent, we may assumc, for lack of anything better, that the constant
errors which enter fo cause the means to deviate from the frue value
are digtributed normally., We then have as alternate methods for find-
ing X: (1) averaging the intermediate means without regard to weights
or probable errors; (2) assigning arbitrary weights to the intermediate
means, perhaps on the basis of experience with the customary accuracy
of the ohservers involved, and finding X by applying Eq. 1; or (3)

" Birge, K. ., Phys. Rev,, 40, 213-224 (1932).
* Bee footnote on page 167.
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assigning weights proportional to the inverse squares of the reported
probablo errors and calculating X by g, 27. This is equivalent to
assuming that a worker who obtains a great number of values, or very
consistent ones, is more likely to eliminate constant errors than a worker
whose valiucs are fower or less consistent. Generally method (2) or (3)
is preferable to (1).

Regardless of which of the three methods above is used for calenlating
X, Tq. 28 should not be used for finding pgx, since, because of constant
errors, X is not as accurate as this result would indicate. In~tmcl\“e
should consider the intermediate means to be elementary observahions,
weighted in accord with the method used in obtaining X, and@aivnlntg
pz by applying Eq. 24. Calculating the grand mean ang" probable
error for the values of Table ITI by 15qs. 27 and 24 yields. (15 44 &+ 0.07)
volts. This indicates the accuracy with which we know the Hj loniza-
tion potential better than the value obtained byasing Eqs. 27 and 28,
namely (15.437 & 0.027) volts.

11. Why Inconsistent Means? Several reasins for inconsistent means
may be mentioned. In what follows we\'ﬁhall ignore errors that are
purcly computational. P\4

(@) Errors of (’onstrmiwn of I nstruments These crrors are nmercus.
Consider the spectrometct. rgua%ﬁbg“l%r%ﬂegmav be irregular, it may be
mounted eccentrically with 1ef>pe('“o to the main vertical axis, it may be
mounted with its normal af.an‘angle with the main vertical axis. The
collimator and the telescop® may not point perpendicular to or toward
the main axis. Oth :Q‘oﬁstmctiona.l faults arc more or less chvious,

(by Errors of Exp:gnenia.l Procedure. Readings may not be taken in
a truly chance order Particularly, if y-values are determined for a
sequence of z-4aliies increasing or decreasing consistently in magnitude,
possibilitiga for = gradual instrumental or other drift may not be ob-
served t]i&ugh observable. A one-sided scale illumination may be used.
Wherg: E‘ros*s-hair settings are made, this may be a source of considerable
ermx Readmgs may be taken under conditions where an observer
mhkmg scttings is cognizant of the general trend of the readings taken.
Under such conditions succeeding settings will not be independent. It
is rather diffieult for one making settings to follow a setting that he
believes low, for instance, in consequence of readings reported, with a
setting that is not biased in the opposite direction. A maker’s scale
may be assumed correct. Temperature variations may be ignored.
Faulty instrumental construction may be ignored. Where small elec-
trical emi’s and small variations are important, constructionsl materials
and designs become vital. Other procedure errors are morc or less
obvious.
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(¢} Errors of Statistical Treatment, One may attempt to determine a
precision index for a case where ihe least count is of the same order of
magnitude as the precision index to be determined. One may easily
obtain an exalted view of one’s own precision under these cireumstances.
One may assume an erroneous distribution of variations of observed
values from the mean. Generally the apparent inconsisteneies between
means will be lessened rather than inereased on this score.  One may fail
to assign weights properly to the various readings forming a group.
A single reading whose weight is given ss zero by the application of
Chauvenet’s eriterion may, if included, yield & mean to which kit
little weight may be given. One may ignore or treat incorreetlyythe
contributions of certain factors in determining a precision index“for
amean. Sce Chapter IX, which concerns the propagation gf Precision
indexes. A 3

(d) Errors of Theory. Difficulties arise here particulafly when some
one or morc constants enter in the production of spidely differing phe-
nomenz.  The case is well illustrated in C‘hapter 20an the discussion of
the present dilemma with regard to the (on{oa.nts of atomic physics.
Ervors of theory are not always easy to cerfiget.

(e} Errors of Unsuspected Sources, ’lhcsc are the errors that remain
after all other imagined probable"tém:rr@l&i@‘@lﬁldrmrmgmen considera-
tion. With discovery, an error belengmg to this group is transferred
at once to one of the above grpﬁpb

12. Summary, When combining rcadings certain of which are be-
lieved mere reliable than obhe*m, the resultant mean is believed improved
if relative weights arc a%&g ed to the individual readings. Specifically,
if p; and py are the, probable crrors of two observations, X; and X,
the relative weights‘atre given by

2,
N\ a
N\ w_ Pz [10]
o\ wy  pr
. NS v
Etnd\fhé' mean of the series of observations is found to be

Zw ( 1]

X = Zaw

The probable error of the mean of #n observations is given by

Px
= [22]
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if all the ohservations are equally precise, or by

Twr?

m_ow\( S [24]*

~wherc x = X — X, if the observations are unequal in weight.
Generally it is more convenient to calculate X and ¢x by the equations

L Zw(X — X))
X=X 44=X+ [25]
. Zw
and N\
. 2 A22 N
ox’ = Zw(x X @ AN [26]

nZw o
where X' is a convenient, assumed, approximate mean and A=X-X,
than it iz fo use the defining cguations,
The probable error of a caleulated probable err‘o} 18 approximately
L, N

= e AN 30
3 3V 2(n~\f) 130}

A group of means with known pr QB&b](‘ errors may be combined into
a grand mean, X, and‘ﬂWpi‘bh%&élémﬁPk&iﬂputed hy the equations

.;." 2
) S 4

& L
pY N\ px°
and N

_ k 1

o b7 =.\/ o

L > 5 \ >t
y '\\w. =

wh,ore % is an arbitrary constant, if the intermediatc means are consistent
mth cach other. If they are inconsistent, X may be obtained by aver-
gmg without regard to probable errors or, preferably, by weighting
arbitrarily or inversely as the squares of the probable errars and using
Eqg. 1 or Eq. 27. The probable error of the grand mean of a set of

inconsistent. means should be obtained by applying Iq. 24.
Te test two independently obtained means for consistenc v, We may

caleulate hx by Eq. 32 or Eq. 36. If, roughly, Az > 1.83, the means
may be considered inconsistent.

[27]

[28]

! See footnote on page 167
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PROBLEMS

1. Given the intermediate means:

10,01 = 0.25 gm 9.98 + 0,04 gm
10.00 +0.12 9.97 = 0.06
9.99 + 0,05 9.96 £0.15

Find the best grand mean and its probable error.

2. Bhow that if 400 measurcinents of equal preeision are divided into five groups,
of suy 40, 60, 80, 100, and 120 readings, selected at random, to yield inlermediate
means with varying probable errors, and these are then combined to yield & grand
mean {or the whole group with a probable error determined by the method outlinéd)
the results will be the same as those obtained by treating the 400 measurements ad a
single group. Y

3. Beattie,! summarizing the values obtained for the ice pmnt on th‘e Kelvin
seale, gives the following for the measurements reported in 1937 a.n@ hefore. On
the hasis of these data, what is the expected value of the ice polnt"‘ Tiyst. treat all
as belonging to a single group and then second as belonging Lo tquep.! rate groups.

AN

Gus Used Method No. of Points viop
He a 21 0 273.176° K
He ap 10 & ¢ 157
H, a, 19 .139
Hz ap 131
Ne F W db?%uhbl "ary.or g IWS
N2 oy "
Ne ap .}." ’ 4 212
No o N 4 129

Are the means for the iwo gqu’]%‘ consistenl? Why does not the grand mean for
the two groups cheek with $hagioup mean?

4. Tn Dearden’s paper & %etermlnahou of e/m from the Refraction of X-Rays
in a Diamond Prism” {RBhys. Ren., 54, 698 (1938)), there is given, in Table T, a set of
experimental values;fm} 5, ie., 1 — u, where p is the index of refraction. In Fig. 4 of
that paper there diu¥iven the weighted mean values of e/m as obtained by varous
workers, togethEryWith their probable errors.  Find (1] the mean of the &'s given in
Table T, toge’[‘%&r with its precision indexes, and (2} the weighted mean value of ¢/m,
taking intg ‘wecount all values plotted in Fig. 4 of the paper, together with its prob-

able ermr
N
l\t:?fle James A., in Temperature—JFis Measurement and Conirol in Science and Industry, p. 83,
New York, Reinhold Publishing Corporstion, 1941
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6. Dunnington ! hag given the following summary of ¢/mg measurements for Lthe
electron. Compute the weighted mean and its probable error.

: |
W0 ey, 10O 3 7

: y Method
Experimenter Date emu emn

Boonp Evecrron or SrroTROSCOPIC GROTE

Houston ' 1927 Fine structure H1—He? 1.7607 ~ 10
Kinsler and Houston 1924 Zeeman effect; 1.7571 N7
Shane and Spedding 1935 Fire struclure H!—IT? 1.7582 4
Williams 1938 N 1.7580( N\ 4
Houston 1933 “ 1 .7,\59& 75
i e
R
Frer Evmetnon (JROTP SAD
-
| AN
Perry snd Chaffee 1930 ‘ Linear aoccleratln{ P 1.¥610 10
Kirchner 1932 1.7590
Dunnington 1937 ;| Magnetic deﬂéqtmn ‘ 1.7597 4
Shaw 1038 Crossed ﬁelas' 1.7581 13
Beurden 1938 V-ray H’Iractmn ’ 1.7600 3

wiww.dbr aullbran V.org.in

! Dunnington, ¥. (., Res. Modern Pm, u "ﬁa {19303,

.N

o)
4 /
N
4 N
g 4 »
Vo
PN\
. '\w
&
’\../
N\
‘?:;
A
N
7 w



CHAPTER IX
THE PROPAGATION OF PRECISION INDEXES

1. Intreduction. In Chapter VI it was shown that the arithmetic &\
mean of a scries of measurcments is the “best” value of the guantity,
measured, and in Chapters VII and VITI methods of obtaining the
precizion Indexes of such measurements and means were dcsc:rib(fd? In
a great number of cases, however, the quantity sought cammt’ﬁq megs-
wred direetly but must be caleulated from the means of’.ti\}u or more
other directly measured quantities. 'Thus, we have

() a length which is obtained by subtracting one’ Dosition reading
from another; AN

{b} the speeific heat, ¢, of tho material of bedy which cools by radi-
alion only, in vacuo, in accord with the equalzi}m:

= —d%_dbraulibrary.org.in [1]

T mdTRl

*a)

where m, dQ/di, and dT/d¢ are, ifvorder, the mass of the body, its rate
of loss of encrgy by l'adiat-ior},iahd its rate of cooling;

{¢} the computed first ridietion constant, o (often called the Stefan-
Boltzmann constant), as'dbtained from the equation

) :‘:.\ / _ P
\\ T 1533

where £, &, and ¢ are, in order, the Boltzmann atomic constant, the
Planck (sol@iﬁfnt, and the veloeity of light in free space; and

{d) tbe index of rvefraetion, n, of the glass of a prism for a particular
wa\»‘el&g'th of light, obtained with the aid of a spectrometer, using the
equation

(2]

A+D

Sin -

n=—— [3]

where A4 and D are the angle of the prism and the minimum deviation
produced by the prism for the particular wavelength of light used.
205
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It is, of course, just as desirable to know the reliability of sueh in-
directly measured quantitics as of the directly measured ones previously
discussed.

Evidently the precision indexes of a caleulated quantity depend on
the indexes of the measured quantities of which it is a funetion. Their
caleulation, given the means and the precision indexes of the measured
quantities, is based on the following theory of the propagation of pre-
cision indexes.

Tn this chapter we shall consider how to determine the precision
indexes of an indireetly measured quantity, U, in terms of ‘rhe]xnutly
measured quantitics X and ¥ and their indexces, first for(spécial cases
such as those involving sums, products, ete., and finall§™for ‘the general
case where U is any function of X and Y. lhg .appllmhon of the
principle of the propagation of precision indexes tQ thie problem of de-

signing experiments i3 also discussed. ~\
2. Cages Involving a Sum or Difference Let
U=X 4.,\?\ 4]

where X and ¥ are the means of e separatc sets of readings, with
probable errors py and py. WelasSume that cach of the 1wo sels in-
volved the same number oi rc.admgs say - 20 or 50, with precisions such
as to give the lesul%ani'{ il llt‘b Sl e ahd Py, W hother or not the actual
sets of obscrvations invelved cqual numberb of readings is inmaterial.
All that is neces@awum\to be assured that the assumed sets are cquivas
lent to the actual det.

With the paising*done at random, let the assumed individual X and Y
readings he palred off to give (X1, V1), (X, Yy), ete. We may then write,
where © -L\’El, 1, ete., are deviations irom the means T, X, and ¥

\:"\i.--1=I’F+uI=X1+Y1=X+x1+Y+y1

N — _ (5]
R 3 er = {4 g = X2 + }yg =X -+ Tz + Y + Y2, ete.
(In view of Eq. 4, these may be rewritten as
U = + 0 [6]
Uy = Xz -+ Yo, ete.
By definition
2
ot = 3 al
7t
However,
Zu? = Za? 4 2Zpy + Zy° [8]

1 Boe Tootnote on page 167.



CASES INVOLVING A PRODUCT OR A QUOTIENT 207
of which for the normsl case we set
Zary =0 (9]

becatise any particular product xy is as likely o be positive as negative
and the summation on that account will tend toward zero. Tt follows
that

ov=Ver + oy [10]
po = Vox® + 57 (111

and similarly for the other precision indexcs. ;
The probable error of u sum is less than the sum of the prolga;ble
errors of the components. Rather, it is the square root of the sum of
the squarcd probable errors of the components. N
It is evident that where U = X — ¥, the equation r'm‘{espondmg to
Eq. 8 will he

Swf = Z2? — 2%y + Iy O [8a]
(g,
and that the final expressions for o and pg mlf\be identieal with Eqs.
10 and 11 P \%

3. Cases Involving a Product or a Quoﬁgn’t: Let
= Xk‘z:w’dbl -atulibrary org.in [12]

Then, with the same aqsumptloné % were made in the preceding sec-
tion, we obtain \

Uy = X1 ¥y, etc. \\ [13]
U4 u = (X + xl)(fulr- y1) = XY + oY + 3 X + ayy, ete. [14]

and, sinee the prcdgct zy31 18 of the sceond order in comparison with
the other fern\"\’

& i, = &Y + X, ete [15]
and N
A0 e = 722 4 2X TSy + X3P [16]
As betore,
Zey =0 [17]
50 that
Su? V22 X%t
Uﬁz=?= Y -+ o (18]
—_ ]_/“20_X2 __|_ X20,?2
and finally
J.az o2 oyl e

X2+ P‘J
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and
po° _ px°
ﬁ ¢

2
+ % [20]

Following a procedure very similar to the above, it is not diffieult to
show that for the case of a quotient, where

U:

il e

N [12a]

4

the expressions obtained for o and pp are exactly those (ﬁ\L"t{a 19 and
20. The proof of thig faet is the subjeet of one of Lh( ’pBo blems at the
end of the chapter. :g

4, Cases Involving Multiplying Constants a{lé »Constant Powers.
Let

U=A4X " [21]
On the basis of the assumptions made xgd}le previous Lwo sections, we

obtain in order

7 = ’.’X‘l , etc. [22]
ww@dﬁ*@uﬂ{ﬁ-a&;{x@:jm 0%, ofe. [23]
Q 1w = Ao X¢7L ete. [24]
and .\{:‘} .
. ool ZL_."). .
":}1\52 = ;4_2a2X2a_ZE.']’I2 = % 23;2 [20]
whence ;‘:\ /
A° W 2
N\ v Y%X (2]
ami\
ot Y rx

~NNWw e — il 27]

} U « X [

Note that the & in Egs. 26 and 27 is the square rool of «*, and hence
may always be taken as positive, regardless of the sign of « in Faq. 21.
5. The General Case, Lot

U=7X T [28]

Applying Taylor’s expansion and making the assumptions of the pre-
vious scetions, we oblain, evaluating the partial derivatives at I7 = &
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Ut+u =fX+2,7 +3)

_— == 6{/'— EJU
=fX,Y) + (5{) 7 + (E’) 73l pE [29]
al7 al7
Uy = PYe zr + 5}7 Yyt [30]
, ZEACE aU\ fol) aU\?
e (2 () () e (-
* (aX = 2Gx) Gv) Tt y) B B
Zey =0 [1?] \
50 thut . K \J)
P %T)z L (@) L O
olj;T = (6X ax + 3}7 Ty ) (.,:‘: [32]
and '\\
aU\Z (6 L'r)z N
S d 2 ot _2 »
pa (ax) px N\ gy T \ [33]
\\..

Obviously, Eqs. 32 and 33 apply to the special ;;s'.éés dizcussed above.

6. Solutions of Illustrative Problems. (aPWith what preeision may
the sine of an angle in the neighborhood of 75%be determined when the
probable error of the angle measurementis 0.02°?

Solution : wwiw. dbraulibrary .org.in .
U=snX P N [34]
14 s
o= —— e ¢ LN 35
oo ((?X) Px \\ (35]
O 1 radian 0.02
r = 5 70%) 2oD02° X ———— = (L26 —_- = 0.00009 [36]°
po = (cos 75, RD02° X srge = 026 [36]

{b) What is t-ht{;c}}ﬁput-ed first radiation eonstant and its probable

eTror, Using tl@’refation '
2n7k¢

\ . [2]

”\:"\;' T 15RR2
and the, 1;’0110\\«'1'11@; values for &, &, and ¢?
k= 1.3803 X 10718 (1 £ 0.00023) erg/(molecule K°)
b= 6.6283 X 10727 (1 = 0.00013) erg sce
¢ = 299776 X 10* {1 =+ 0.000013) cm/sce

' That the radian is a natural unit for the sine of an angle and for its pr(:»bable
Orror as well as for the angle jtself is generally ignored. That it may be so considered
SeEmSs supported by the well-known expansion

sinf =7 — §3/31 4 05/5] —- -+
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Solution:
Applying Eq. 33, one obtains

i
e
i
—”’
(5]
2
=
E]
+
o~
| g
“'--.._.ﬁ
]
=
L]
+
o~
o | ¥
\\‘—/l\}
i
b

[37]
2 2 2
Po _ g PE Br” | 4P ;
5 = 16 + 9 7 +475 \
= 16(0.00028)2 + 9(0.00013)% + 4(0.00{30{3}1%\ [38]
= 0.0010¢ A\ [39]

and the constant, after its value has been sepa@tely determined, may
be reported as

o = 5660 X 107% (1 £0. GDlO)@I;g;’(cm see K°%) [40]

7. Cases Where the Precision Index\s of the Component Quantities
Are Not Independent. Any propdéa{ion equation will yield ineorrect
results unless the dircetly obselwed precision indexes are truly inde-
pendent. Special ware dboubdtvertaken.mhen using one of ihe special-
case equations, Thus, if N\

g U=2X [41]

we may find pp (Q(nectly by Eq. 27 on the basis that U = 4X* with
A=2and o —.' Then

;‘:" PO = p PX = 2px [42]
T, hb@f?\rer we use Lq, 11 assuming U = X 4 ¥ and that X = ¥y,
Xg ="V, ete., we obtain

\j\'” po = Vgt +o5° = opx [43]

which is too small by the factor 4/2. This error arises in aceepting
the assumption, made during the derivation of Eq. i1, that the pre-
cision indexes of X and ¥ arc independent and that therefore Zay I
negligibly small or zero. However, the assumption of independency 18
not justified here and Zzy cannot be set equal to zero.

Similarly, to find pp when U = X2, we use JFiq. 27 on the basis
U=AX*with 4 =1 and o = 2, and not - I. 20 on the assumption
that U = XY where X = V. Simple cases such as these can usnally
be handled without difficulty if the general propagation law, Eq. 32 of
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Eq. 33, is applied, but they do indicate how diffieulties arise when the
component. precision indexes for X, ¥, ete., are not independent.

A somewhat mote complex case is illustrated in Eq. 3. If one views
the quantity n as the simple ratio of two measured guantities and at-
tempts to apply Eq. 20, he will neglect the fact that the numerator and
denominator arc not independent. The correct procedure for this
case i3 the subjeet of one of the problems at the end of the chapter,

A still more eomplex case cited by Birge ! is that of finding the pre-
cision index of the Sackur-Tetrode eonstant, Sy, as defined by

,(2 - k) 3a eﬂ-};

Sy = Ryl =
v o 1 !'131\'?09:

[441.)
£\

of which Ry, %, eg, %, and N, represent, in order, the ideal gas eOhstant,
the Boltzmann atomic constant, the base of natural logarithms, the
Planek constant, and the Avogadro number. Actually; W0t one of the
vatiables on the right-hand side of the equation is indepéndent of the
others. Thus, K7, \d

il "\
(1) Ry = Vndy NS [45]

7

where v,, A, Ty, and J,5, representing ey 'éc-the[ely the molal volume
of an ideal gas under standard cond e tFVH andard’ &tihosphere,
the ice-point, and the mechanical equivalent of heat, arc independently
measyred, C

e\ Fe
2 Nog = — 46]
@) Sy == [
where F, ¢, and e, repj'eés?:ﬁiing, in arder, the faraday, the ratio of the
escoulomb to the aheafomb, and the electronic charge, are independ-
ently measured, ()7

O R A ne -
{3 PR Y = =0 = 47
) RN " k A"vg TOJ15FC [ ]
and o\
\ 3
@ k=l [48]

The lagt, ¢quation is necessarily thus written because not & but A/e can
be directly measured.

The caleulation of the precigion index of Sp is cven more eomplicated
than Fq. 44 would lead one to believe. In the procesg, one normally
substitutes for Ro, k, , and N, the values given by Kgs. 45 to 48 and

"Birge, R. T., dm. Phys. Teacher, T, 356 (1939).



i

212 THE PROPAGATION OF PRECIBION TNDEXER

follows up with the standard procedure discussed earlier. The equation -
obtained by the substitution is

e f A\
9 e §=_-(U“ ”)
vnd, ln( ™) Tod1s

° " Tod1s e [40]
h 3
(Fey* (—)
&

§. Use of the Law of Propagation of Precision Indexes in Planning a
Precision Experiment. When it is desired Lo obtain U with a Certain
precision, pg, we may use Eq. 33 to caleulate the maximygl\permissible
valucs of px and py. Thus, one method of measuringtlie strface ten-

gion of water, 7', makes use of the equation
rhd R\
- (K 0]

where h is the height of rise of waterin a c@ijlary tube of inlernal radius
7, d is the density of water, and g is the desleration of gravity. Assume
that a precision of T is desired gueh’ that pr/T = 0.001. We then
wish fo find the maximum allowable precision indexes for r, , d, and g,
first to sce whether or net thex aré attainable, and second, in order that
exccssive time, moh#y ‘Qﬁﬂ?%ﬁﬁe"ﬂ&ﬂﬁpenﬁ in measuring one or more
of these quantities to a higher precision than is necessary. By Eq. 33

@SC)C-C)-C)

To obtain & prcliminery cstimate, we assume that », A, d, and g may
be obtained\with equal fractional precision. The maximum permissible
fmct-iu;;@\frobable error is then given by

o\“ o
& "\ Px i1 (pﬂ') =
R 2 W20 ) = 0.0008 52]
QD Y A 0.0005 [
“where X may represent #, k, d, org. Thus for the approximate consistent

set of values for 7, b, d, and g of 0.3 mm, 5 ¢m, 1| g/cm?, and 980 cm/ sec?,
the corresponding probable errors should not exceed 0.000H mm, 0.02
mm, 0.0003 g/cm?, and 0.5 cm/see?. Ordinarily it would be extremely
difficult to obtain # and » with this precision. Howcever, d and g may
both be easily obtained to precisions greater than those specified. Henee,
d and ¢ may be assumed Lo be without error in this calculation of per-
missible probable errors for the component quantities. Eq. 51 now re

duces to 5 . .
PrY _ (PrY (2nY _ 53
() = (=) + (5 - ooonr 55
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Assuming that r and % may be measured with equal precision, we now
have
Pr Dr
T s 0.0007 . [54]
It follows that the precision for T that is sought requires probable errors
for r and A which shall be of the order of 0.0002 and 0.035 mm or loss,
It seems highly improbable that such precisions may be obtainablo
for r and £, A conclusion to be drawn is that the method is unsatis-
factory for obtaining the surface tension of water with the desired prch
ciston. If we still wish to measure the surface tension with a relative
probable crror of only 0.001, some other method such as the pEdSsiire-
drop method should be considered and analyzed similarly. Lo
9. Summary. When a quantity, U, eannot be measured'ijl‘i’f‘?zctly but
must be caleulated from the raean values of two or mo;:e’\independcntly
measured quantities, X and ¥ say, the precision ind¥xes of 7 may be
caleulated from those of X and ¥ with the aid of tk@law of propagation
of precision indexcs. In general, if A

U =fX, TNV [28]
the probable error of T, pp, may be obtgirled by the equation
ATT\2 \a{{fﬁiﬁf.d(gf}.jﬁbrary.org.in
=2 22 P - _3 32
po (aX). oy T (82]
and the standard deviation, w“r;\, by the cquation

\a{,r 2 aU 2
% J) o‘fz—i-( ) op? [33]

TENG e
BT \ex oY

For special ca@%"of Eq. 28, the corresponding expressions for py are
given in Table\l)
O

R TABLE I
S N ) CoRresroNDING Srecial Forms oF Egs, 28 axp 32
V U Py
X7 Viz® + 7
(5 - (5)
U
AX® @ = P

It is important to check the independence of the precision indexes of
the eomponent quantities X and ¥, for if they are dependeht in part on
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the same measurements, Eqs. 32 and 33 are not valid. The law of propa-
gation is also valuable in planning precision cxperiments. If I7 is de-
sived with a certain pg, we may, assuming X and ¥ to be of cqual rela-
tive precisions, caleculate, from Eq. 32, maximum allowable values for
px and py. Then, knowing the approximate valucs of px and pr, wo
can tell which quantities may be measured roughly, which more care-
fully than usual, and generally, whether the experiment is a good one
or a poor onc for obtaining U with the desired precision.

Q.
PROBELEMS

1. A lenglh of approximately 10 cm is measured several times w 1iE ‘tHe aid of &
calibrated scale. It is concluded that the probable error of the tmeah, ui tho readings
taken at one end of the length is 0.03 mm; of those at the other end 0.05 mm. What
iz the probable error of the mean of the length deler mmatmnqr’

2. Show that Eqgs. 19 and 20 serve as propagation equ;itl(ms for the case where
U =X/Y. Du not use Bqgz. 32 and 33.

3. The probable error of a single reading with a givern voltmeter is 0.20 volt; the
corresponding quantily for a given ammeter, 0. 015%‘[) What are the percenlage
probable ercors of single determinations of na,tta@ss 8f lamps at their rated waltages,
obtained from readings on these instr umentr; for the ease of {a) a 500-wali, 115-voll
lamp; (b} a 60-watt 115volt lamp; (¢} a b(] “a,‘rt 32-volt lamp; and (d) a 60-watt,
S-volt lamp?

4. Assuming the cm%@mlg&{t@hﬁwré‘{rpo have geometric slopes of ap-
prmamately one and one-half respéetively at peints p and g, determine the relative
precisions with which the physa.(,a,l slopes at these points may be determined.  As-
sume that lines ab and de adeapproximately equal in length und that the actual
probable errors for all Iength imeasurements are equal,

B. The relation bet\vé&p\remstl\nry and temperature for polished tungsten follows
closely the law

1.200
< 1_(’1")
\“ -7 To

Granted +Hak 7y, the value at the gold-point, 1336° K is precise, that elsewhere o
may be b‘t\\carefu.llv mensured that the relative probable error of a single determina-
tion. ig 0 Q05%, and that the cxponent of 7'/T, has a probable error of 0.005, within
“hat proba,ble error can & person locate the temperature of a polished tungsien fila-

et by means of a single resistivity measurement in the neighborhood of (¢) 1200° K,
) 1800° K, and {c} 2500° K?

6. With what precizion may the density of a 10 gm steel bearing-ball of approXi-
mate density 7.85 gm/cm? be obtained, if the probable error of the determination of
its average radius is 0.015 mm, and of its mass, 0.05 mg?

7. The length of & lamp filament of assumed circular cross-section is measured
with a rule permitting estimations of length to 0.1 mm.  As an average of 10 measure-
ments, 273.45 mun with an average deviation from the mean of 0.24 min is obtained.
Its diameter, measured in various asirmuths ot various erosssections with an instru-
ment permitting estimations to 0.001 mm similarly yielded, as a econsequence of
50 meagurements, 0.2550 mm with an average deviation from the mean of 0.0015
From a single weighing, its mass is deternined as 268.45 mg with an estimated
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uncertainty of 0.05 mg. Assume the seales for the length and diameter measurements
exact. 1f the probable-error method is used in reporting precision, what values may
reasonably be reported for the length of the wire, its crogg-section, its radiating
surface, and its density?

8. In & meagurement. of the index of refraction of a 60° glass prism for the Dy line
(n = 5895.93 A), the data in the table below were obtained. Assuming the seale
exact, what iz the computed index of refraction? Tts probable error? (Note that,
as shown in Eq. 3, the prism angle sppesrs in both the numerator and the denomi-
nator.)

MEASUREMENT OF PRIEM ANGLE

|
Ko. of Side of Prism Mean Soale Probable Error \s\
Res.(i'm " to Which Telescope Read: of Tndividual
i iz Normal eading Reading ,
N

16 Incident 80° 45' 307" m'éo‘h

10 Emergent 200° 23' 45" D5
[/
N

7 $4
MEASUREMERT OF DEVIATION ANGLE AT Minidud DEviaTioN
S 3

No. of Telescope Position | Medn Soale Probable Error

. A 1 of Tndividual
Readings Measured N dbaadibprary O
1 Far undex;igl%a} ray 60° 15° 30" 20"
30 For devs@ed' ray 6° 457 207 40

|

9. For the degrepiéf\ dissociation, z, of HI at 620" K, Bodenstein! obtained
0.1914, 0.1953, 0,1668, 0.1956, 0.1937, 0.1938, 0.1949, 0.1948, 0.1954, and 0.1947.
The relation beQreen # and the equilibrium constant K, for such a reaction as

O\

RN Hs + I — 2HI
iy )
a\" 2
)| Y A
\ K= (2{1 — x))

Determine the equilibrium constant: for the dissociation of HI at 628°K and its
probable error.

10. Compare the relative preeisions of graphieally determined geomelric and phys-
ival glopes of curves for the cases wherce the tangents to the curves form angles
approximately 0°, 45° and 90° with the z-axis.

1 Bodensiein, Max, Z., physik. Chem., 22, 1 (1897}



CHAPTER X
THE ADJUSTMENT OF CONDITIONED MEASUREMENTS

1. Introduction. Independent measurements are often made on quan-
tities that are known or assumed to be related according to one or more
specific laws. Such measurements are said to be conditioned: Their
means are not neeessarily the most probable values of the gl@ntltle%
measured. They must be adjusted to conform 1o the law m\l._f\\q relat-
ing the quaniities. Thus, for the three angles of a trzang_,l{ we may
obtain as mean values, 30° 2/, 60° 2/, and 90° 1’. We, could not certify
sueh values, however, sinee the sum 0f the three aug»leq must equal 180°
oxactly. Tn general, if k& quantities arc related hywn equations, adjust-
ments are neccessary “hon more than & — n ql{qntmws are independently
mezsurec.

In this chapter we consider the prablem of adjustment first for a
simple case, and then for the geneml{a%c in which the relation between
the variables is linear. Later wasconsider cases involving products,
powers, and more coniptitateer %ﬁ'ﬁﬁ(‘]ﬁ&mgl’ﬂe treatment of adjustments
here given assumcs that the measurcments obey the normal distribu-
tion law. It further assuines thut the most probable valucy for the k
unknown adjusted meahs are those which yield a maximum probability
of occurrence for th\welght(,d measured means. In accord with the
principle of least-gqutares (Chap. VI, p. 163), this condition is equivalent
to applying the‘condition of & minimum to the weighted sum of the
squares of, t}}e deviations of the measured means from their adjusted
values. \\

2. Equally Weighted Observations of Linearly Related Quantities.
Consii{er first the quadrilateral survey problem of determining the most

\awbable values for the elevations of three points B, C, and D above

base A. Using the same letters B, € and D to represent the eleva-

tions also, let us assume the following independent obscrvations, all of
equal weight:

Mesgurement

Quantity {feet)
B 10.0

¢ 18.0

b 4.0
C-B 9.0
C-D 12.0
B-D 5.0

216
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Taking account of the uncertaintics of measurements, we may express
these observalions in cquation form by’

B — 10,0 ft = A 1]

¢ — 1801t = A, [2]

D— 40ft =4, 3]

-B+C — 0071t = Aq [4]
C — D — 120 ft = A [5]¢

B —D— 50ft=A (16

of which the A’s represent the unknewn adjustments that are npéégsary.
These six obscrvation cquations, involving only three unkngtwns, show
clearly the necd of adjustment. From them, following the ]é’zast-sr;umns
prineiple and making the sum of the squares of the A’s'ﬁ}\minimum, we
shall form three so-called normal equations involving\only B, C, and D
as unknowns. Their solution will yield the mgs;\})robable values for
the elevations sought. o\

Before proceeding farther with the special problem, consider the gen-
eral solution. Let there be »n linear Qbéer{ration equations, of equal
weight, involving % {where & < @)W(ﬁglrgqﬁﬁ;ﬁ}? {ngﬁl]lll‘&ble quanti-
ties, @y, @z, - €. Thus, in the q,djus:ted form, they are

artd + 3?1@3&-‘!:' @y — X = A
azth +*Q;~Qé’+' kgl — Xz = 4 (7]

AS
e\ '
Z”\‘a‘an + bplds +-- Fonldy — Xp = 4n
Here X I‘ef)}%ents the observed value of (@@ -+ b1Q2 -+ - - -£184),
ete., an’d\'%h.é A’s represent the small unknown adjustments neccssary
for gonsistency. Comparing Eqs. 7 one by onc with Egs. 1 to 6, we
see that @, @2, Qs represent the quantities B, C, D; that the coefficients
a1, by, ¢, take the values 1, 0, 0; that aa, bs, co take the values 0, 1,0, ete.
It is necessary that all the A’s of Fig. 7 be of the same physical nature,
since their squares are to be added.
Maximum probability of oceurrence of the observed sct of X s re-
quires, as stated, that ZAZ shall be an absoclute minimum. Since the
@'s are the independent variables, it further follows that

B(Za?) @A) _ e _, I8]
Q. 0Q 9k
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Considering now only

AZTA?
ath
rewrite the observation equations as
ath + A4 = 4
agldy + Ay = Ay 0]
N
afd + 4, = A, \' \\

where 4, replaces (bi@Qy +- - -£1Qr — X)) ete. It follpggs‘"ﬁ.hatf. 48 an
ahbreviation, \ 3

a2 »j\"\:
HEL) _ 9 (0254% + 20,Tad 0502)
aH ath RN
= 2[(2a%)Q, + 2a4] €0 [

"The summations here as well as those in thefollowing equations are strictly
of the type Zae,; and Za,4;. By anéxactly similar procedure,we ohiain

vew s HEy QR ) g i
s + ZeC =0
,{“x\ . [12]

L\

N\

o @+ ZHK = 0

N4
These equdtions are the normal equations for the unknown adjusted
Q-values\dnfl “are cxactly cqual to them in number. Replacing the
abbrevi@tions 4, B,-- K, by their equals leads to the following forms,
mql;glégl‘rit-able for computational purposes:
N

QO

 (Za)Q: + Cab)Qs + (Sac)Qs + - - (Sak)Qy — SaX = 0
(Zab)Qr + (S5)Qs + (Bbc)Qy 4+ - - (Sbk)Qs — THX = 0

(Zac)Qu + (Zhe)Qs + (Z)Qs +- - - (Zck)@y ~ X = 0 [13]

(Zak)Q + (TR + (Seh)Qs +- - - (Sh2)Qy — THX = 0

The values for @, @, Q¢ vbtained by solving Eqs. 13 simultancously
will be the most probable values for those quantitics. Inspection shows
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that Iqs. 13 may be obtained from Kgs. 7 rather simply. To obtain
the first normal equation, one merely multiplies each of Eqs. 7 by the
cocflicient of its €, and takes the sum. Similar procedures yield the other
normal equations. Note that the summations involving the A’s, in view
of Eqe. 10 and 11, equate fo zero. For the worker who has oceasion to
solve numerous sets of normal equations, the mastery of some syste-
matic method of solution, such as that of Gauss or of Doolittle, is recom-
mended.  For others, the method of determinants, given in Appendix 1,
should prove most convenient. )
Returning to the problem of the quadrilateral survey, we find, ag'd
result of the specified treatment, that our special-case normal equations
become A\
33— C— D— 60ft=0 A\

£ NN
< 3

—B4+3C— D—3%0ft=0 ’\: [14]
—-B— C+3D+4+130t=0

Note, in this conncetion, that the X; of Eq. 1.';.@\}'10 ft, not —10 ft.
Theve result, for B, €, and D} in order, 934 ft;’l“?% ft, and 434 ft; and
for the &’s, likewise in order, —14 ft, —14I%, 34 ft, —34 ft, 1 ft, and
—34 it, Tle who doubts that the abqs{e"set of A's possesses the least
value for TA? ig invited to test it againgbabysothnnssthewgver obtained.

Consider as a second case that oj':t}ie angles of a plane triangle. Let
the angles he «, 8, and v, and their measured values, 4, B, and €, all
equally precise. What are Q}réir most probable values? There are but
two independently Valued\"ari'gles ; the third angle, v say, is to be con-
sidered as 180° — @ —¢8, Our observation equations are, accordingly

ZQi\'.a -4 = AI
~O" B A [15]
:“.h i = g
Q
N —a — B4+ (180° — ) = Az

4 0\’ 0"
Tho\ﬁt@nial equations hecome
20+ B4+ (C—A4—180°) =0
vt 284+ (C—B—180°) =0

[16]
whence
180° — ¢ — A+ 28
B=—"""3

180° — € — B + 24
3

[17]

o =
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3. Unequally Weighted Observations of Linearly Related Quantities.
Referring to the previously considered problem of determining the most
prebable clevations at the eorners of a quadrilateral, let probable errors
be given for the measured quantitics, With B, C, and D representing,
as before, elevations above A, assume as the availuble data

Messurement  Prohable Error

Quantity (feet) (feet) Weight,
B 10.0 0.2 25.0
C 18.0 0.5 1.0 \
D 4.0 0.6 2.8
C-B 9.0 0.4 6.2,
o-D 12,0 0.8 1A\
B-D 5.0 1.0 1 B

{
As shown elsewhere, weights are chosen proportiondl to the inverse
squarcs of the probable errors. The procedures the same as hefore,
except that now we consider in effect the fitsh observation equation
ropeated 25.0 times, the second, 4.0 times Gte.” The normal equations
for the general ease with lincar relatiomgh’i]é become

Zwa®)Q, + (Swab) Qg—l-“ = (ZwaX) =0
(Zwab) ) - IR LB 500 x) = g

R [18]
A

Ewak) - (Swbk)Qs + -+ — (ZwhX) = 0

In computing theléoeflicients Zwa?, Zwab, ete., of Kgs. 18, a tabulation
such as thatemployed in Table T will be found very helpful in the elimi-
nation of dmputational crrors,

For gite'special case of elevations at the corners of the quadrilateral,
the 'n\().l"m.al equations involving weights become

N \ N

\ 3} 3228 - 62C — 10D — 199.2 ft ~ 0
—6.28 4 11.8C — 1.6D — 147.0 ft = 0 [19]
—LOE — 16C 454D+ 1308t =0

Solution of Egs. 19 viclds 9.88 ft, 18.30 ft, and 4.84 ft for B, ¢ and D.

These values differ appreciably from those obtained on the basis of equal
wetghts.
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TABLE 1

221

[trestrariNg A CoNVENIENT CHECKING ARRANGEMENT ror Use o Fivomxg Tax
Corrricients oF THE NoRmar Equarions (Thrur Iv NUMBER as ILLusTRATED)
roR WEIGHTED CoONDITIONED MEASUREMENTS

e ; WAL wweth wae waX Surms
26.0 25.0 0 0 250.0 275.0 + N
0 0 0 0 0 A
0 0 0 0 0 o)
—6.2 6.2 ~6.2 0 —55.8 5.8
0 0 0 0 0 A0
1.0 1.0 0 —1.0 50 0 5.0
2 ;“
\::‘}\ 224.2
Totals 32.2 —6.2 —1.0 150 224.2
o N
o §*
wlr wbb whe WY  whX Sums
’.‘}‘ el
0 0 2 8braulibrary Bre i 0
wardbraulibrary Srg.in
4.0 4.0 S0 3.0 76.0 .
0 o ™ 0 0 0
6.2 6.24, 0 55.8 62.0
1.6 % —1.8 19.2 19.2
0 \\o”' 0 0 0
N 157.2
Totuls O\ 11.8 —1.6 147.0 167.2
N
O
e R .{\ wee weX Bums
AT
«4{ ~ 0 0 0
oV 0 0 0
2.8 2.8 1i.2 14.0
0 0 0 0
~-1.6 1.8 -19.2 —17.6
-1.0 1.0 —-5.0 —4.0
-7.8
Totals 5.4 —13.0 —-7.6
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4. Observations of Nonlinearly Related Quantities. In a large per-
centage of cases, conditioned quantities are related by nonlinear equa-
tions. Four examples may be cited. (1} The first concerns s, the sec-
ond radiation constant; k, Planck’s constant; ¢, the velocity of light;
and %, Boltzmann's atomic constant; which are related by the equation

_he

. 120]

Ca
Although all four quantities may be independently measured, the values
of only three may be independently specified for a consistent seflof the
eonstants. {2) The second concerns the four independently wwasurable
quantities: g, the porous plug effect; v, the ratio of thq\i’;ﬁ-—"o spocific
heats; (d7'/dv),: and (dp/dT)y, where T, p, and v have theiraccusiomed
significances; go related by the equation SO

_ v — 1T — w(@T/dopes
v Tlp/dT)

that only three of the quantities may bg\'grif}epcndently specified.  Al-
though T and » are also independenflyaheasurable, they may be ob-
tained so accurately, relative to thpgdtrﬁer four constants, that they do
not enter into any question of adjtlsiainents_ but scrve to represent states
to. which adjustmcn’ﬂ’swﬁ’emgﬁl%ﬁﬁg o ey be aseribed.  (3) The
third concerns the independently measurable quantitics: k, Planck’s
constant; e, the electroni€\charge; Ry, Rydberg's constant for the (H!
atom; ¢, the veloci'qo ef’light; and my, the rest-mass of the clectron;
which are related by

u (21]

. h 22?77\
Pl R aray [22]
't\" € R_HC (i)
O Mg

As will b€ noted in one of the problems, the adjustments that seem to be
rgqyﬁréd in this particular case arc so great as to cause concern regard-
"m;g. methods of measurcment and theoretical relations. (4) The fourth
Nintvolves the specific heat quantities: ¢;; ¢, v and T{(dp/dT).(de/dT)p,
a quantity cqual to the universal gas constant R for the cage of an ideal
gas; which are related by the two equations

dp) (dv)
— =T - 23
EA (dT AdT /o (23]

¢
y=F [24]
€y

and
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The method of adjustment for nonlinear cases is well illustrated by a
treatment of ease (1) above. Here we conveniently write as our obser-
vation cquations

LN
X :
v =1+ 4
2
25

P 25)
Xy ; N o

AN
Ca he NS
._=_-=1 ;s“.
X, EX, TN ~\

where the X’s and the A’s have the significance giveq\é'arlier in this
chapter. Assuming the A’s to be small in compaligon with unity, we
write Egs. 25 in logarithmie form, thus: N
: ‘..x\ -
In— = Inh —In X; €4
X 1 )I:' - '

e W :ﬁ 'brau ibrary.org.in
In—=Ihe¢~ln 2=&2 YOr8
2 s e

(26]

1 k "'igk InXs=A4
—adnk —1n =
158 ) 8= 44

th“+ Ine—Ink —InXy = Ay

It should be né't}d that the A’s, as well as all the other members of
Eqs. 26, are@i’ﬁerics.‘ That these A’s shall all be of the same physiecal
natwre s dmportant, since otherwise, the summation ZA? can not be
3-ppli§d'ih' an adjustment. _
lonisider next the weights assigned to Egs. 26. Generslly, certaln
probable errors will be given for the X’s; if not, weights are assigned
arbitrarily, With probable errors given, the corresponding probable

' Tn order that “In k — In X, shall be a numeric and that both A and X, ghall be
quantities possessing physieal dimensions it is evident, that the logarithms (?f k and
X shall contain, in addition to the logarithms of their respective DUmerics, log-
arithms of the units in which the quantities are expressed. These additional terms
cancel when the differenee of the logarithms of the quantities is taken. In all natu.ra.l
equations involving logarithms of physical quantities, something like _th@ foregoing

will always enter to make the checking of units possible.
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errors for the In X’s follow at once, The principles of propagation of
preeision indexes indicate that

Pan xp = E
(27]

_ P

Pan 1o X4

N
The inverses of the squares of these probable errors are the Weights
sought. With weights once assigned to Eqs. 26, we follow L}fv‘p?m edure

leading to Eqs. 19, and obtain . O
(o +wdlnk 4 (w)lne  — (w)lnk oo
&/
— (w; In X, :F}w‘_{ In X)) =0
(we)Inh 4+ (wy +wy)lne dIn'%
(’w&l}gfg + wln Xy) =0 [28]
— () Ink — (wg)lne —I— (w_;“—i— wy) ln k

o (wsn Xz —wyInX,) =0
Using “observed” val\ﬁ’gs“?glb ha“cl,l ]faaﬁtf &, f namely

Quantify Valuo
h X4 % 6283 X 10727 (1 & 0.00013) crg sce
¢ “8 900776 X 10" (1 = 0.000013) em/sec
EoO 1.3803 X 107'¢ (1 =+ 0.00023) erg/K°
C2 P\% 1.432 (1 £ 0.002) em K°

we obtain fp:r thL respective weights of their logarithms,

Ao\\w ( 1 )2 ( 1 )2 ( 1 ] ( 1 )2
Wy S W Wy LWy = : : .
‘"\ e TN 600013 0.000013 0.00023) 0.002

Vo = 240 : 24000 : 80 : 1

[29]

A great variation in the weights is to be noted. Substitution in Iigs. 28
leads to

241Inh+nc—Ink~— (2401n X, +lhX,) =0
Inh+ 24001 ¢ —Ink — (24000 In X, + In X)) =0 [30]

! Physics Staff of the University of Pittsburgh, Outline of Atomic Physics, New
York, John Wiley & Sons, 1937, 2nd Ed. -+ b. 891,
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—InhA—Ine+4+8llnk—-80InX;—InX,) =0
from which we obtain
h = 6.6283 X 107% erg sec
e = 299776 X .1010 em,/sec

[30a]
k

I

1.3804 X 1072 erg/K°

cz = 1.4394 em K° O\
'\

Because of the very low weighting of Xy, the “observed value'for cq,
the values of &, ¢, and k are not appreciably changed in the.adjustment.
This might have been concluded at the beginning and wé might as well
have computed ¢; in accord with Eq. 20 and taken thatds the adjusted
value. The value to be thus computed is 1.4396¢in"K°, only greater
by 2 in the fourth decimal place. As will be fairfrom the discussion
of the shorf method of the following sectionythe actual labor of carry-
ing out the final ecomputations may be rcj.iiwbd considerably.

One point of general importance in agl’d':tion to that of the method of
adjustment follows from the foregoing/tibrasdidwarylofy that, if one or
morec of the X’s is so highly weiglted as to “swamp” the weights of the
others, those highly weighted yalues may well be accepted as fixed and
not susceptible of adjustmert.)

Sometimes it is not apparent at once how to adjust the given data
so that the A's directly involved in any adjustment will always be of
the same nature. Emsider the sccond example cited above. Let the
quantities dircct-lMcagured and for which we have probable errors be
B Y, (di‘/d‘.’}’})\‘{':g}:ﬂd (dp/dT),. The simplc procedurc here is to intro-

Y= e T -

duce fungpibm of the latter three quantities, H for

N\
v(d ”aﬂ)}a, and K for T{dp/dT),. The principles of propagation of
precision indexes permit the determinations of probable errors for H,
J,and K. Tq. 21 may now be rewritten as

HJ 131]

K

and, as in Fg. 20, adjustments are now possible for the quantitics enter-
ing Fq. 31. Given the adjusted values for H,J, and K, t-he. proce.durc
for finding the adjusted values of v, (dT/dv)y, and (dp/dT), is obvious.
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et 1s also consider the fourth example cited above for which we have
to adjust four independently mecasured values contnected theoretically
aceording to two relations. Here we write as our observation equations

Cp _ 11.{1 = Al [32]
Cy — .anr'fg = 52 [33]
y— My=F — M, = & [34]
Co L
d (j:v N
T (ﬁ)v(ﬁ)p—“ My=cp—cy— My = A R ) [35]

Ny

Evidently A differs in physical nature from the oﬁii‘fi' A's and some
change must be made. The simplest thing is to fe¥ise Eq. 34, writing
it as \/

cp — Mzey = Dgey “=\\£}f’3 [36]

of which Mae, 18 tohe treated as a Q-tprrﬁ}f Eqs. 7 and not as an X-term,
Since both sides of Eq. 34 were mubiplied by ¢, in obtaining kq. 36,
the A’y compared with the left §idé: of Eq. 36 15 as much an infinitesimal
as is Ay compared with w.dbFawliheersiecs ithis c,, like the ¢, of T%gs. 33
and 35, is an assumed adjusted value, the weight that will be assigned
to Eq. 36 will be (1 ;’0?22@3)2. We may now proceed to the adjustment
of ¢, and ¢, as desired, Wising I5qs. 32, 33, 35, and 36.

5. Short Methgd\%r a Common Type of Adjustment. Where all of
the gquantitics to.Pe adjusted or functions of them taken singly can he
related linealy™in a single equation and where each meusured value is
a separatélyy measured value obtained for cne of the quantitics to he
adjustb(l,..a certain simplification of procedure is possible. As such a
casg}p&lsider the adjustments for the quantities in the cquation
AN

~\/ 271_5 k4
N\ 7T 15 B [37]
of which o represents the fourth power radiation constant (often re-
ferred to as the Stefan-Boltzmann constant), & the Boltzmann atomic
constant, i Planck’s constant, and ¢ the veloeity of light. For these
equations we have the values? given in the upper half of Table 11.
It one substitutes the given values for %, %, and ¢ of Eq. 37, he will

1 Physics Staff of the University of Pittsburgh, Atomic Physics, New York, Johs
Wiley & Sons, 1937, 2nd Ed., pp. 380-391.
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Py

obtain 5.600 X 107 erg/(cm?ee K°*) for ¢, & value which does not
check with the stated observed value and shows the need of adjustment.

TABLE 11

Crrrars QUANTITIES AND FUXoTions aXp TuEIR VALUES FOR UsE IN ILLUSTRATING
4 Sporr Memior ror o Common TyYre or ADIUSTMENT

Quanlity or Logarithm of
Funetion Value Numerie
¢ 2.00776 X 100° (1 - ¢.000013) em/see 10.47680 2\
h 6.6283 X 10727 (1 = 0,00013) erg/sec 57.82140
k 1.3803 % 1077% (1 & 0.00023) erg/(molecule K°) 6. 18997)
¢ 5.735 X 1075 (1 & 0.0020) erg/(cm?® sec K*4 BL75853
24815 40.803 {81069
4 N 2065700
X, v 575853
X, N 79.46420
Xs AV 63.44012
D P \% -0.00576

Of the values reported, 1t is secll t&a{f Qllelflr;acqional probable crror
for ¢ is 8o small compared with thgai:.’%’r o that ¢, bechiddof its “swamp-
ing effect,” may be treated as exact in the adjustment process. Rear-
rangement of Tig. 37 yieldsim’\

£ N/ 5
log o +:1qg\h\3 + logk}; = log 2115 — log ¢* [38]
&~
which takes accaunt of the stated “swamping” precision of ¢ and may
be identiﬁud{éﬁ}ﬁ by term with
O\ _
N G+ Qt+LB=A4 [39]
of \l;}oh the soparate @'s are to be viewed as the quantities needing
adjustmont.
A stated condition for the type of adjustment being considered as-
sumes for the observation equations, Eqs. 7

@ — X1 =M
Q, — Xz = s [40]

Q@ — Xz = 83
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With weights wy, ws, ws, these lead in the regular manncr to normagl
equations which when solved yield

B
Q=X+ a D
B
Q=X+ —D [41]
Wa
B
Q3 - X3 +—D
Uy "\
of which N
W Wetlly ¢(\A
= : e\ 42
Wt + lgiite + Waily % s.\ I: ]
and N
D=A—- X +X;+ X220 [43]

D represents the diserepancy for which adjustments must be made.

The fractions B/wy, B/ws, and B/w; musgb and do add up to unity.

The manner of obtaining from @, @, QKQ‘.'}the desired adjusted values

for the original quantitics in any indiwidial case will be obvious.

In accord with the above, the aqulirei*iated method of adjustmoent for
quantities whose functional relation is expressible by a lincar cquation
eonsists of (1) selectitig t#br ﬁ@é@éﬁf%’oﬁ%ﬂi&iom @1, s, ofe., for each
quantity and the form of thedinear relation, (2) determining the weights
w1, Wy, and w3 to be agémbed to the values Xy, X, cte., delcrmined
experimentally or othérwise for the linearly related functions or quan-
tities, (3) detennjﬁn\g the discrepancy, D, to be adjusted among the
lincarly related functions, (4) splitting up the discrepancy into compo-
nent parts whieh are proportional to the reviprocals of the computed
weights, (5papplying these component parts to the appropriate X, X,
cte., valges, and (6) computing the adjusted values for the gquantitics
whose functions were related linearly.

‘.{ip‘plying the outlined procedure to the adjustment of o, 4, and %,
Mt;lec'd for which was indicated above, we note that step (1) has already
been carried through above and that the functions which have been
selected as @y, Q,, and @, of Eq. 39 are in order log o, log A3, and
log (1/£*) and that log (22%/15¢%) has been represented by A. Apply-
ing step (2) we obtain for weights 1, Wy, wy of Xy, Xy, X3 the rclation
.11 2, , 2, 2
0wy g (0.0020)% : (3 X 0.00013)% : (4 X 0.00023)

.25 1 5

= = 44
31731731 [44]
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Since the last three members of this cquation sum up to unity, it follows
that, in order, they represent the values of B/w;, B/ws, and B/ws as
they appear in Eqgs. 41, For step (3} the necessary data are listed in
the lower hall of Table II, and the value to be computed for the dis-
crepancy D in accord with Eq. 43 is seen to be ~0.00576, Following
step (5), the partition of D into components in proportion to Bjws,
B/wy, und B/ws yields in order —0.00464, —0.00019, and —0.00093,
These applied to Xy, X, and X3 in aceord with Tigs. 41 yield

Q1 = 575389 N\
Q2 = 79.48401 48]
4 \..’
@s = 63.43919 O
Step (6) leads to (J;“

¢ = 5.874 X 1077 erg/(cm?see K4 '\\

h = 6.6277 X 10™% org see N4 [46]
A,

k= 13810 X 107° erg/(m(ﬂ{f:ﬁha K°)

While probable errors for cach of these thtedvalues may be determined
by the method that follows, it has notkbeen so done here. Note, how-
ever, that the adjustment for ¢ Jgy ;al,’b’ ut 54 times %l{e&t{hl‘ than the
indicated probable error of the Qbs’ervéél value and thet the adjustment
for £ is twice the probable exror. The situation leaves doubt as to
whether ov not the adjustment is advisable,

6. Probable Errors o(i ‘Adjusted Observations. The solution of

Egs. 18 leads to the fellowing expression for ::
ZwaX Etbab v Zwak
E-wb)&fh\Zwa - Zwbk

p”
&
o)

PR .

L) 3 L b4

/ _getf"X iw—b};— % = o X| + Xz + - onXan [47]
1w Wan - - - L

Swab  Zwh® .- Zwbk

Zwak Zwbk --- Swk?

where o, as, -« -a, are complicated but casily derivable in terms of the
cocficients of Xy, X,,- - - X, appearing in the summations ZwaX, ZwbX,
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and their minors, ete. Tt follows that

po, = Ve px,® + aPpx,® +- o ?px 2 TS

and likewise for the probable errors of the other @'s,

For the simple case, already treated, of the clevations of three corners
of a quadrilateral above the fourth, where the observations are all of
equal weight, we have

8B~ C— D— (X, — Xs+ X) =0
—B4+30— D—(Xs+ X+ X9 =0 M49°
—B— C+3D—(X;— X5—Xe) =0 ¢

.'\

Ny

B =3X +iXe +3Xs —1X4 + %X"
€ =1X, + 1%, + ixg T3 40K [50]
D =3X, +§X: +3X 1X iXg

where X, X, ete., stand for the readlngqub‘it 18.0ft, cte. It follows,
in accord with the principles of progag,a ion of precision indexes for
gunig, that

There follow

px,” px} | px’ pk?

g = d'ﬂil alﬁgﬁr‘h yl%rg"i'n 16 [51]

Further, since the probalﬁe errors of all the X's are the same, we also
have

O

.pﬁpc=pn=%—\p/}fj— : [52]
Agsuming 0.6 Eb\ as the probable error for each of the six measurcments,
the probs,l{l’e}error for the adjusted values for B, €, and D is found to
be 0.4 fbya value less than the assumed 0.6 ft.

7..The Present (1940) Status Relative to the Evaluation of the Con-
stants of Atemic Physics. The constants particularly under considera-
{100 here are the clectronic ehar ge, ¢, the rest mass of the clectron, my,
and Planck’s constant, k. Many of the measurcments of atomic physics
involve functions of these three quantities, For example, Rydberg’s
constant for an infinite mass, ., is defined by

P 64???,0
C:’Ls 602

B, = [53]

of which ¢ represents the velocity of light. While Rydberg’s constant
is among the quantities most precisely determined, the precision for ¢
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is still higher. Usually both but sometimes only the latter is treated
as exact when adjustments involving them are undertaken.

Adjusting ohserved data in the field of atomie physies Lo obtain con-
sistent values has attracted the attention of many physicists. Among
them we cite Birge,! Bond,> Dunnington,® DubMond,* and Darwin,” since

TABLE TV
AuxtLiary Coxeraxts Uskn 8Y DuNNIneroN IN TTis Srupy oF Aronic CONSIANTS

[Bee Tabie 110]

N\
STMBOL DrscrirrioN Varry T‘X@g})

¥ Faraday in international coulotnbs/gm. equiv, o 3

wt. 9640400 + 1.5
¢ Veloeity of light in em/see (£.99776 & 0.00013) x 10
p Conversion factor from N.B.8. int. to abso-

lute ohms AN 1000485 + 0.000007
q Conversion lactor from N.B.3. int. to aigbb’—

lute amperes \ 0.999970 2= 0.000020
r/p | Conversion factor from N.B.S. mt 10 aban—

lute amperes 0.000026 £ 0.000020
¥ Conversion faLtQ_;\jgglﬂb a{}%}gf*yt%r%)ﬁ‘

lute volts 10000411 =+ 0.000022
R | Rydberg constant for IVt ernt 109677.76 = 0.05
Fi (3a8 constant in org%{(mole K9 (8.3136 -t 0.0010) X 107
ka Ratio of mass,spectrograph to chemical

atomie wt. X\ 1.000275 = 0.000020
Joy, Ratio of tulad grating to Sicgbuhn wave-

lengt.l}s\'(Bﬁar’dcn) 1.00203 + 0.00002

Koy T
Re L;at;érg constant for iofinite mass in em™ | 109737.42 + 0.06
B 4 Atbitrarily adopted value of Planck’s con-

| 3 stant in erg sec 6.6100 > 107

AN

\heil‘ contributions arc basic to the presenl discussion. References to
other work will be found in the paper by Dunnington. Altogether
Dunnington lists results from eleven types of measurements (Table IT1)
involving &, h, and mq and functions of them as subject to adjustment.

! Birge, R. T, Rer. Modern Phys., 1, 1 (1924; 13, 233 (1941).
2 Bond, W. N, Phil. Mag., 10 {1930}; 12 (1931).

3 Dunnington, I, G., Rer. Modern Phys., 11, 65-83 {1939).

t DuMond, J. W. M., Phys. Rev., 56, 153 (1939).

5 Darwin, C. G., Proc. Phys. Soc., B2, 20209 (19407
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Darwin includes the determination of B, as a twelfth. In Table TIT
it is shown also just how these measurements involve the &, h, and mg
and also certain other experimental constants whose values (Tahle IV)
are ordinarily accopted as exact to a higher order of certainty. The
experimental values with their probahle errors as recorded might be
used, a3 some have been, to obtain adjusted lesst-squares values in
accord with the method described above. Before so doing it scemed

482 ‘ : , :
A
# \"\
4.81 '\
= . R W
= R
e O
5 8 :
4.80 -
} { s (D
Qé.\ W
4.79 1 1 L S '
0.0 0.2 04 06 08 10

. . wx:'f?\’i?,dbr_auljbrary.org.in

F1a. 1, A Birge-Bond diagram for testingythe consistency of experimental data con-

cerncd with the atomic constants eb, and mp.  The meanings of e, and n are stated

in the legend of Table T1T, whgc'\thc data for this graph are to be found.

&)

wise to Dunnington, as i{\héd to others hefore him, to test for consist-
ency. Assuming the Wighly precisc value for R, as fixed, it is evidently
possible to eliminatds or h or m, from the expression given in the third
column of the table’ind to modify the cxperimental values accordingly.
If, for instance;fHe expression obtained by electron diffraction, namely

S TAAY ' s
- (—) = (1.00084 4= 0.00058) X 107" esu [54]
L) G\

is s}\u\’eﬁated and my, with the aid of Eq. 53, is cxpressed in ferms of ¢, &,
and aceepted values for R, and ¢ (Table IV), one obtains

4

X (0.25558 & 0.00006) esu [55]
iy

If further, one substitutcs an approximate rounded wvalue, say
6.6100 x 10727 crg sec, for &, he obtains an approximate value, ,, fore.

Making this substitution, Eq. 55 ylelds
en = (47964 & 0,0019) X 1071% esu [56]
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as shown for the sceventh item in the last column of Table 111 This
~ procedure of first eliminating mo and then substituting a rounded valye
for i’ has becn followed by Dunnington. urther, he has presented
the series of e, valucs obtained in a Birge-Bond diagram (Fig. 1), in
which e, Is plotted as a function of », the power of A corresponding to a
power of unity for e in the various cxpressions similar to Eq. 35.

The halt-lengths of the lines of spread associated with any onc point
on the Birge-Bond diagram represents the uncertaintics of the com-
puted e,’s. Should the values have been satisfactorily consistent all
points would have fallen on a single average horizontal line of g near
that their lines of spread would have crossed or nearly crossedit. This
is very far from being the case. There are three groups Df\\» Abes each
of which separatcly seems to have external (on,glstenu S Whether or
not the whole group may be said to have external co‘nklstoncv as that
is defined in Chapter VIII is left for a problem tQ\bE found at the end
of this chapter To seme, adjustments [or a cags sch as this is without
much meaning. Dunnington and others on this basis have sought for
possible errors of theory or for faulty e‘(pqimgntal procedure,

With 4., 4,, 43, cte., as the (xpemnentul values of Table 111, Eq. 54
may be rewritten as

W\J&aéb#alﬁlm%,ﬁ ndz [57]

If, further, approximate sGunded values k', ¢, and m'q are introduced,
we may rewrite Eq. 57@3\
) e Ale
In [ (1+5~(>i>)—)]+ [ : (1+M)] =1InAy [58]
My e/ my
and, since t@xe»A terms will be very small quantities, as

~C

NN Alhfe) A(e/mu) B
,\\\ o n——x 59

e Ty AT M G )

mIg:a}'v{-*in showed that if the A terms were assumed to represent coordi-
nates and we write

Alh/e) _

B Je [60]
Ale/mo)
Ate/mo) 61
o/my Y (611
L. [62]
[

our Fq. 57 reduces to
z+ 3y = By & AB; [63]
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of which B7, representing the right-hand member of Eq. 59, and AB;, its
computed uncertainty, are both small and dimensionless. The other ten
equations similar to Fq. 63 have similar small values for their B's.
All are simple and none involves more than two of the unknowns. The
actual magnitude of the AB’s will depend on accepted values for Py,
e.g., 0.05. A certain convenience of treatment follows, duc to the pos-
sibility of thinking of the %, ¥, 2 quantitics as space coordinates and of
the AR’s ax defining slab-shaped regions in this space to which the equa-
tions predict probable limitations of actual values for z, ¥, and z. For
further details the reader is referred to the original article. After a di§-\
cussion of the diserepancies, Darwin singled out items 1, 10, and A2 ol
Table 11T us most likely correct and from these three alone {:p;i{:hﬁed
that the moest probable values for the quantitics desired are

o

e = 4.8025 X 10720 esu N 6]
e . NN
— = 1.7591 X 10 emu / [65]
My O

h = 6.6243 X 1077 er{é@c’ [66]

A satisfactory adjustment of the discrepansies has not been found.

8. Summary. If k quantities are kngwn or assumed to he related hy
n cquations, and if more than & <% Rﬂ the quantitics are measured
independently of one another, thgwn%'éangag}ﬂ%%rqn(ﬂcﬁié'ﬁdent sets of
measurements are no longer the most probable values of the quantities
measured but must be adiusfed to give values consistent with respect
to the n conditioning e t@ti’ons. The adjustment proeedurc when the
quantitics are linearlyelited and the measurements are of equal weight
consists of the following steps:

(1) Write in I\h(}i} adjusted forms n obscrvation equations similar to
the following:tai}zo

O @ b @ — %

e) ’w agfh -+ bolds + kol — X2 = Ao {7l
of Which the Q’s arc the related quantitics; the X's the indepcndently
observed values for functions of these quantities related as shown by
the various constant coefficients @, b, ¢,- - -k; and the A’s the necessary
adjustments, )

(2) Multiply each of the n observation cquations by the coefficient
of @, in that equation and add the % resulting equations to obtain the
firat normal equation

Ea)Qy + (Sab)Qy +-+ - (Tak)@ — 2aX = 0 [13a]

The summations involving the A’s are zero.

&y
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(3) Repeat step (2) £ — 1 times, substituting in turn, however, the
cocflicients of the other §'s to obtain altogether & normal equations.

(4) Solve the k& normal equations simultancously to obtain the ad-
justed values of @y, Qs,- - Qs

{5) Obtain the probable errors of the adjusted gquantities by applying
Fq. 48.

When the independently observed values X1, X, - - - have the welghts
Wy, W, - -, the procedure is identical with that above, exeept that the
first ohservation equation is multiplicd by w0, the sccond by wy, ete.
The normal equations then have the form O

Ewad)Q, + (Swab)Qs +- - - (Swak)Q — TwaX 5@}

[15]

(Swak)Q; + (Cwbk)Qz + - - - Swk?)0x xfzﬁ,u;sx =0

Adjustment procedure when the quantifies» are nonlinearly relaled
depends on the type of relationship. N ‘general rules can be set up.
It is necessary, In any case, to write flle observation equations in such
a form that the differences betw eeiL e observed and adjusted values
are in the same units for all the-ghantities to be adjusted, since the
squares of these d]l‘l‘éreﬂc‘éél’ml}bfél’b@f fedled and the sum made a
minimum.

Where all of the quang fhiss to be adjusted or funetions of them taken
gingly can be related lmearly in a single equation and where each meas-
ured value represer?bs\a value obtained for one of the guantitics to be
adjusted, a mughshortened procedure is possible, With the quantities
or functions Axfanged as a sum in the equation of condition that must
be satisfiedpohe substitutes measured values and computes a cliscrep-
aney v ‘k\’:}\l 15 to be eliminated. The adjustment is completed by divid-
ing up'\t is discrepancy among the various guantities or funetions in
quersfe proportion to their weights.

PR

Q “To ohtain the probable errors and other precision indexes of the ad-

fusted quantities (1) the solutions for the adjusted quantities, as ob-
tained from the normai equations, are arranged for each as a sum of
terms cach consisting of an exaet cocfficient and a measured quantity
with a given precision index, and (2) the principle for obtaining the
precision index of a sum is then applied.

PROBLEMS

1. Find the most probable elevations of B, ¢, D, and F ahove A (the lowest)
when the following observations are made. Assume all determinations to have
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probable errors of 2.0 ft. What is the probable error of the final determing-
tions?

B =102 ft ¢ —B =400 1t
¢ = 500 ft G =D =2401%
=150 ft D-—FK= 721}
FE = B0ft B—-E= 20ft

2. Lel the obzerved values for the sngles of a plane triangle he 60° 10 4 1,
€0° 2" = 2" and 60° 0°'% 5. What are the most probable values of the angles?

3. Meusuicments of the y-components of the separations of the star images of
slars o, 4, ¥, and & {indicaled in the order of increasing ¥) are as given below. De-,
ferming the most probable values of the y-somponents for these siar images megs
ured with respect to the image of star e.

O\
Distance Distance o\,
Separation {(mm) Beparation (mm},
g a 0.063 &= 0.005 B 0.150 £ 07003
y—ux 0.21% £ 0,004 - . 193'\.1 0.005
-t 0.250 & 0.007 5 Q041 =+ 0.006

4, Given the following sesumed measured values for COp af\a0 A and 100° C:
6, = (0.275 == 0.005) cal;’(g;ry\d‘?]‘ ’
ey, = {0.101 =+ 0.002) c.a!;“i(};rxf C)
y = 1417 £ 0.005 )

T(@) (ﬁ) _ (0. igudbrosdibearyger grin
AT Jy \dT - 50

~

determine the adjusted values for ¢ones, and ~.

5. Trom direct thermal measuféments, with A representing the change in Gibbs'
fimetion (the chemists’ free*c\heffg'y) for the reaction specified, the following have
heen obtained: \

(@) cgf-ué 2C + 310, AG = (8,260 = 200) cal

() 2H; H80 = CoH, AG = (+15,820 = 300) cal
From equilibr ] ':E;);lstalllt determinations, the {ollowing has been reported:

@A CoH; = Gl + Hy AG = (422,330 == 10) cal

Th'-“l'ghfsgme uncertainty has been expressed as to the justifieation for :u]just‘ment
hel'lNVé arc justified in using the data conditionally. What, in view of relation ¢,
ure the most probable values of AG for the reactions a and #? _

6. Do the data of Table TII satisfy either the Rossini and Deming or the Birge
test for external consistency as set forth in Chapter VILI? Making use of the
XE-I)rf)cedure, determine the probability of oecurrence of the e, valnes of that lable
on the assumption of an expectod normal {requency distribution. i ]

7. Using the method empleyed by Darwin fo obtain the needed sm]p.llﬁecl ob-
servation equations, determine the adjusted values for e, ¢/mo, and A which follow
from standard procecure. What are their probable orrors?



CHAPTER XI

LEAST-SQUARES EQUATIONS REPRESENTING
OBSERVED DATA

1. Introduction. Of the many products of least squares, that wh\lch is
most valued is the method which it provides for the deterfoination of
the best equation of a specified type to represent obsergad data. Al
though strictly covered above under the most generglf:ga@se of the Ad-
justment of Observations, the method, because afits “imporiance, is
reconsidered here in a fashion more directly applicafkﬁe 10 the determina-
tion of least-squares eguations. !

Often the constant appearing in a ('1c3i£§§1\é(1llation ig important for
the operation of an instrument or thq..épjjlieation of a principle. In
other ingtances it stands for a confata,ntx of nature and represents the
goal of an cxperiment. Particulaly in this latler casc therc secms
justiﬁcatiop for the &gw%p;uiiﬁic-igypél{: ‘1?13513—5(1.11&1'653 method ?.riclds.
Examples of such constantsware the pfl%éoeleutrlc constants A/e and
w/¢ of the Finstein equation

- b
'i,\ Ifn=ly__°l’ [L]

\\" e e
the first radiation” constant {often called the Stefan-Tloltzmann con-
stant), o, agiﬁmring in the fourth-power radiation equation

\\ ln® =Ino+ 4(n 1) [2]

KN\
andughe gravitational acceleration of a [reely falling body, ¢, as it ap=
. peals in the well-known equation

\ )

gt*
3280‘1“-‘-’05‘1-? [3]

When one relies chiefly upon the eye in fitting a curve to p]otted
data, a tendency, difficult to overcome, is that of giving undue weights
to the end points of the plot even though it is understood that the inter-
mediate points are equally reliable and should be given equal weight.
This tendeney is particularly undesirable in the numerous cases where

- the extremc points are such beeause of added difficulties experienced in
making observations in their regions and the regions beyond. By the
238
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method of least squares, however, one may give either equal or unequal
weights, as desired, to the various points of the plot.

Granted the type of equation to he used and the weighting of the
data, there is no prospect for the obtaining of a more satisfactory equa-
tion than that which the least-squares method yields. There is, however,
one drawhack to its general use, and that is the great amount of labor
which it ofttimes but not always entails. For this reason it may often
be supplanted, with some slight sacrifice of confidence in the result, by
one of the substitute methods of Chapter IIT combined with the method
of successive approximations.

The method of least sguares does not indicafe the best form of equaﬂan
whether linear, or quadratic, or of other fype, for the representation, Qf given
dala. At most, @t yields the most probable values for the constanls Shtering
an equation of an asswmed form, whatever that form may be. 1n Yine with
this, one sees possibilities of many least-squares equatigns’ for the same
given set of data, each being a best representatiomfendts own type of
equation.  Of these, the actual form selected, ag ndted in Chapter I1I,
will generally depend upon theoretical oonmde@tbns or the will or the
intuition of the worker.

In this chapter we discuss particularly, the theary and the process for
cases where ¢ = f(z) takes the form of\A straight line or a parabola,
simple ¢uses to which many others m’Wbdhﬂddsbdat Phogtemed methods
for special conditions, probab]e en!or‘s of constants determined by least-
squares methods, and a ('ntc iant for closeness of fit of a least-squares
equation are also considered, YSpecial attention is directed, in case com-
puting machines are nat \aﬂable, to the time saved when starting with
an assuned approsumate cquation.

2. The Straight Bhifié with Liability of Error Limited to the Dependent
Variable. The gonstant which describes the varialion of the resistivify
of a metallic 'Ig,ment with temperature at high temperatures is an im-
portant, t}lar\ct(,rLatlt, of the metal whieh helps to distinguish it from

N Td . .
othcr sfétals. Tt is represented by — diT and is obtained from a plot
L 3 il

of I‘Jgi; = f(log 7). Data of this kind for molybdenum," as taken from
Fig. 1 of the paper referred to, are given in Table I and Fig. 1.

Here we scek the least-squares equation for a straight line to repre-
sent the data just referred to. Conveniently represcnting log 7 by x
and log o by y, the form taken by the equation is

y=a+ bz
of which & is the constant in which we are the more interested.

! Worthing, A. G., Phys. Rev., 28, 190 (1926).
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In accord with the least-squares principle, or, what is the same, the
maximum probability principle, the line desired is a line characterized
by a minimum for the sum of the squares of the deviations of the plotted
points from it. A difficulty appears at once. Shall distances be taken
at right angles to the linc? If so, the equation obtained will apply only
to the particular arbitrary coordinate scales scleeted for the figure.
With any other selection, different values will be obtained for a and b.
How, in the general ease with y and x differing in nature, we may sclect
coordinate scales justifying the application of the least-squareg prin-
ciple to perpendicular distances belween the plotted pomtfs dnd the
least-squares line will be discussed later. O\

Here, following the usual and least arduous procedure, W eshall assume
the deviations, the sum of whose squares is to be a mlmmum to be
those that are strietly parallel to the y-axis, 'llus id equivalent to
assuming that the x-measurements arc exact antfl.d\hht the values of the
dependent y-variable only are liable to errors\"Now the procedure is
direct and simple. N,

Where y ropresents values defined by {be\leaqt -squares equation

y—a—i—b.c [4]

and g, the obscrved values, we ~§eek, as in connection with the adjust-
ment of conditioned @bsvrdbﬁ@ﬁ&ﬁmyrwﬁlm), to minimize, with respect
to both @ and b, Z(yy — y} ‘or what is the same, E(a;n —a— )
Where n represents thegiumber of obscrved points, all assumed deter-

mined with the same recision, there follow

N\
A\ \ d 2
D — By —a—bxy*] =0 (5]
) \\} oa
b \d 8
S0 2 B — a — )7 = 0 6]
fmm}'hﬁich.we chtain
NN na + b3z = Iy, (7

) aZz + b2z = Zay, [8]
It is well to emphasize here that in Fgs. 7 and 8, the unknowns arc
@ and b, and that the summations involving 2 and ¥, are known guan-
tities. From these equations, we obtain

Z;p Eyn — E.t:}?xy_n 9]
nXz® — (Zz)*
_ nIxYy — Exzyq

gl g [10]
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We may next proceed to tabulate the given values of 2 and Yo, to ob-
tain the summations entering Egs, 9 and 10 to solve for 4 and b, and
finally to subslitute in Kq. 4 to obtain the relation sought.

Ixeepting, however, certain instances where computing machines are
available, much time may often be saved by fivst introducing a conven-
ient linear relation

y=d + bz 11]

which represents approximately the relation sought. One then treats
by the least-squares method the differences Ay, between the observedd

#o's and the ¢'’s given by this assumed relation, to obtain a relqtio\n
xS

Ay = Aa + Abr y112]
The final desired relation follows at onece from Eqs. 11 and 19,
y=y + Ay = {4+ Aa) + (B 4+ Ab)x = a"’% b [13]

We shall follow this plan, With the eonvenienchIﬁealmg with smell
numbers in mind, it is often found desirable, a8 noted alse in Chapter
ITT, to replace y or z or both by simple fagetions of those variables.
This procedure will also be made use of in, what follows.

Insgpeetion of the 2 and yg columns of Pable I shows that the numbers
represented by 2® and zy, will be AP g iR B R Bdvantage is
obtained, as shown in the table, by making the substitution

A 2 — 3.2000 [14]
&
and treating the #’ of this\equa,tion as the x of Eqs. 11 to 13.
NO”
\ / TABLE 1

‘..\:. _
Dars Szowry § RESISTIVITY, p, OF MOLYBDENUM 48 A Funcrion of TewPER
ATCRE, T, ag {stip 1v TunusTRATING THE ProceEpur IvvoLvep IN FINpDING THE

™

% Teser-SquaxEs FQUATION OF A STRAIGRT LINE
N

, x o “) At 10622 | 1060y | mo— v

{OK)\ fu2era) | (log T) Qog gt |{z—3.2000} G — ¥)
2280 | ¢1.97 | z.3586 | Z.7o22 | 40.1596 | —0.0013 | 25472 | —207.5 | —0.0001
2132 | s7.32 | 3.3288 | E.75%4 | +0.1288 | +0.0003 | less0 | + 38.6 | +0.0014
1988 | 52.70 | 2.298% | E.7218 | +40.008 | —0.0096 | 9720 | —158.0 | —0.0006
1830 | 47.92 ! 3.2625 | 5.6805 | -+0.0625 | —0.0014 [ 3906 | — 87.5 | —0.0005
1e80 | 37.72 | 3.1720 | B5.3765 | —0.0271 | —0.0023 73¢ | + 62.3 | —0.0017
1285 | 32.00 3.1062 5.5064 | —0.0008 | 40.0008 8245 — 72.6 | +0.0012
1198 | 28.94 | 3.0711 | F.4618 | —0.128% | —0.0002 | 16816 | + 25.8 | +0.0001

i 10.2097 | —0.0057 | m1281 | —388.9 | —0.0002
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For the convenient approximate sclution, we may assume (Fig. 1)
y = 5.6100 4 1.1502 [15]
For the Ay, there follows, as also shown in the table
Ao = Yo — ¥ = Yo — (5.6100 -+ 1.1502") (18]

The quantities now subject to least-squarces treatment arc the rela-
tively very small numeries «’ and Ayo. N

In accord with the requirements of Kqs. 9 and 10, we ne;.:\;t.iorm the
sguares 2’2 and the products &’ Ayo, determine the sums SN\ X0, Ta'?,
and Tz’ Ay, and substitute the values obtained in the equuations to obtain
Ag and Ab. Bo doing leads to ~‘ R

S
_ (81281 X 107%)(—0.0057) — (0.2027) (=898.9 X 107%)
‘= 7(31281 X 107%) — (0.2029)”

= —0.0007 [17]
_7(—308.9 X 109 — (0.2027)(0.0057) _

Ab : ' 00031 ,
7(81281 X 10~%) — (k2027 0.003 [18]
wiw.dbraglibrary org.i
There follow W {"au' brary.org.in
Agine —0.0007 — 000312’ [19]

AN
#SY - Ay’ = 5.6093 + 1.146927

<& — 5.6003 4 1.1469(x — 3.2000) (20}
Tq. 20 isvbhe least-squares equation which best represents the data of
Tablgsland Fig. 1, and 1.1469 is the least-squarcs value found for the
N Tdp
important constant — de .
~N p dT
\in the final column of the table under o — y. That the two end dif-
ferences should he the smallest is a matter of chance. The close agree
ment loaves Jittle doubt as to the correctness of the assumption that
Tdp . . .
; S is & characteristic constant. Just how much of the 1.1469 18
significant cannot be stated without the treatment of more experi-
mental datfx. Without doubt the 9 iz without real significance.
With weights assigned, w; for point 1, w, for point 2, cte., the pro-
cedure is very similar to that deseribed, Corresponding to 1, We then

How well the cquation fits the data is shown
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530
/
e
570 _
g ES
e # X
4 ¥
[~} oy =
o N 3
- // .
1360 A +0lot2,
) / ™
i Vs oy 0.000
= // Ayzfs) ) \
3 % 1
N
5.50 / - - ~0.002
/ | AN
e vaM

N Az 3.36
3.04 3.1z 323(:1_9; e .2
Fra, 1, Graph of log resistivity of molybderifzm"as a function of lqg temperature.
The dashr:}:l line rsprescnts the assume‘ﬂ%%]fﬁ&%{lkh{miﬁﬁ&lﬂelaﬁon. _The
X points represont the differences bebween observed values and those predicted
by thai assumed approximate relafion. The line Ayg = f(z} represents the least-
seuares reiation for thosze diﬁ’em}es‘ The full ine ¥ = f(x) represents the Jeast-
squares rclation for the orig'\n;z‘l’dat-a,‘

have, efleetively, wy Qb;;(zi"x’a.t-ions averaging fo , ete. Simple reasoning
shows that for wc{gh’ted observations

oY s — TwaZwr
‘;\\" 0= ZwrZwyy ~ 20 Yo [21]
and ..\'f -
@ i SwSwryy — ZWEZWYo
where

D = TwIws? — Swz)? [23)

3. Procedures Leading to Shortened Computations. Often, bl};;t not
always, the labor involved in least-squares co{nputatlons may ? m};
duced appreciably or greatly by following certain procedures. At _‘ias‘
four possibilitics may be named. Two of them have already been ilius-

trated in the preceding section. The first consists of introducing new
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variables to take the place of those given in the original data. Referring
to the preceding section, note that the independent variable T' was re-
placed by log ' — 3.200 and that p was replaced by log p. The gain
has been twofold, that of obtaining a lincar form for the funetion and
that of obtaining numbers with reduced magnitudes with. whicli to deal.
As will be noted in a later section, such a change for the dependent
variable involves # change of weight. This change, really rather
unimportant for the casc illustrated, was ignored in the application
referred to. _

The second procedure, also illustrated above, consists of asqiting a
convenient approximate relation between the two variablesgtaking the
differences between the observed and the resulting corrcsim?ﬁling com-
puted values of the dependent variable, and applying thenormal least-
squares procedures to such differential values. Seg du this connection
Eqs. 15 and 16 above and the column of Table [ h&;{i«ded Aya. The gain
has been a very considerable reduction in magnitude of the numeries
involved., A

The third procedurc eonsists in malgi@:ﬁlight adjustments to yield
values for the depcndent variable carrgsponding to more convenient
rounded values for the independent “variable. In making such adjust-
ments, ihe definite trend of the golation should be observed. Iow this
may be done and th.e“ﬁﬁiﬁ’r%ﬁ%ﬁm%‘@éﬂ{%'% well illustrated in Tuble IL.
A rough plot of the data ifidicates a straight-line relalionship with an
expected rate of variation of «, with pressure of about 1.3% X 10-8
K°~!/mm-Hg. Aggyjihg this common rate to all values of a,, the
indicated adjusted values follow directly. When, furthes, the fivst two
named procedures’are applied in addition, the problem of finding the
desired @, will*be found to be quite brief and simple. The carrying
through,,c\;ﬂ}ﬁch a eomputation is left for a problem 1o be found at the
end of\bhe chapter. To what extent adjustments of this type may be
safely. made may well be left to one’s common sense. Any exror intro-
;thziza on this aceount inte the result for the case considered is obviously

\m \Irtappreciable.
The fourth procedure consists in taking or selecting data in advance
for least-squares treatment in such manner that successive values for
. the independent variable shall differ by the same constant amount, sy
10 em, 5 min, 40 ft/sec, ete. This procedure is only applicable where
the dependent variable may be equated to a polynomial such as

¥ =a+ bz + ex® + dx®

involving the independent variable only to the third power (ab present)
or less. When such is the case, it is possible, with change of variable,
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TABLE TT

! oF MasSACHUSETTS INSTITUTE OF

TECHNOLOGY 1N A DETERMINATION OF THE ConsTaNT VoLumz COEFFICIENT e
or Nrrrogen AT 0°C AND ZERO PrussuRe aANp CERTAIN ADJUSTMENTS OF THaAT
Data ¢ YiELD Morg CoxvENIEXT VALUES FOr Leasr-Squrarms TREATMENT

Pormioy 0F DaTa REroRTED RY BEATTIE,

Unadjusted Adjusted
» 1V ey ) 1 ey
mm-Hg Ko mm-Hg Ko A
A\

908 .28 36740.48 1000.00 36740.71 4 , .
749.66 | 36707.01 750,00 | 36707.06 AN
59%.59 36686, 30 600,00 36686, &
449.42 | 36666.57 450.00 | 3666645
333.11 36651.84 330.00 3665 M0
£

1 Beaitic, James A., Report on tho Thermodynamie Temperat.gﬁe}f ;l;e Ite Point, from & symposium
on Temperature, o Measuremen! and Control o Srience and Jm}mtry, New York, The Reinhold Pub-
lishing Cerporation, 1841, p. &3, o

R

to make use of the procedure dex-’@;]z&]ﬁh(hh‘ﬁﬁﬁib&@ﬂérghﬁl tables com-
puted by Cox and Matuschak whise uses are described below.

4. Nonlinear Forms of Equdtions That May Be Readily Reduced to
Linear Forms for Least-Sqédres Treatment. Of these we cite Cauchy’s
two-term cquation fot. tHeindex of refraction of a suhstance

‘\ n=a+i§ [24]
.’\..
the commeon deday law '
\L\” I= Inc—ar [25]
the normaI frequency distribution of errors

V y = yor " | [26]
the law for the variation of field strength in the neighborhc.)od of an
infinitely long, uniformly charged cireular wire of unknown dismeter

Er+a) =b [27]
and the potential energy for a system of two bodies experiencing mu-
tually attracting and repelling forces

[28]
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The first of these is actually linear in n and 1 /A* though not in » and ).
_ The others may be changed to® the following forms for convenience:

Inf =l — ar 29
Iny = Inyy — h%2® [30]
b
i T+ @ 313
Vi® = a — ™ [32]

in which forms the equations are lincar in terms of the functions Eluit-i-
plying the constants sought and may be treated accordinglf

5. The Straight Line through the Origin, y = bx, with(z) Only Liable
to Error. Sometimes y is known to be proportional to Y Then the best,
value for the single constant b in the relation e NI

RY:
y=bx \/ [33]
is to be determined. This is the case for ghe-radiancy of a black body
where o Qg
& = 216 [34]

. which takes the form of Eq. 33 }w}i(:n“? is represented by z. Here we
imagine T* plotted @s“,@b&gﬁﬁgﬁﬁgﬂ/I@rﬁnordinatus. The procedure
outlined above, on the assugiption that ¢ 1s zero, and that y, or &, only
is liable to error, leads fo'a simple cxpression for b.

Substitution of a §~'Q\into Lqs. 7 and 8 leads to two expressions for
b, namely ’\\ "

[b = _Ey“] [35]
A 2z | ®an
and N
'® : Ea:y[,]
- b= - 350
.'\'\\ [ Zx? | (Ea.®) (350}

Fhe ‘former depends on the partial derivative of a summation with
\“,réspect {0 @ and is meaningless here since @ is a constant and ne such
partial dertvative is possible. The latter, however, depends en a deriva-
tive with respect to b of the summation Z(yy — bx)® based on the con-
dition that @ is zero. Tt gives a best value for b for the condition that
the graphed straight line must pass through the =z, y origin. Cor-
responding to the original specified condition, Eq. 35a is the one to be

used.

For unequally weighted pairs of values, we have

Zwry

b =
Zwa?

[36]
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For the constant ¢, we have accordingly, for the case of equal weights
given to obscrvation equations of the type of Eq. 34

_ ZRT*
g = E(Té)z [37]

Eq. 33¢ forms the basis for much work in Correlation. (See Chap.
XI1L)

6. Change of Weights Implied by a Change of Variables. Instead of
following the procedure cutlined in the preceding section for obtaining
a most probable value of the first radiation constant «, at least two othér
reasonable methods may be followed to yield least-squares values. AThe
three methods will normally yicld different best values unless Q’c?:bﬁnt
is taken of the variation in method. « M

T,

Tirst, let Eq. 34 be rearranged to read - R
In®=lne-+4nT ¢ [38]

We may imagine In ® as the dependent variable glotied as a funetion
of In 7', the independent variable whose Valugs’,\Es those for 7% in the
preceding scction, we shall treat as free frogrgrror.

Accordingly we seek the least-squares(liné whose slope is 4, and in
particular its intercept on the In (R.g,aﬁ,s. Equating & of Eq. 7 to 4,
vields

/

w:ww .dbraulibrary.org.in

B — 42
ar= ﬂ;_x [39]
whenee ,i:“x\ 5
N [ Zln®w—4Zin T
o '——\11‘1'_1 [-———"—n " = ] [401

a value which isf @1\50 obtained by merely averaging the values of Ine¢
as given by {88 and then taking the antilog.

Second, ,\\Ké'rhay rearrange Eq. 34 to read

N ® 1
~O" A
3

Similarly, we may imagine ®/7T* the dependent variable plotted as a
function of the independent variable 1/7* which is assgned .free from
error. Now we seek the intercept for the least-squares line with a zero

slope. Equating the b of Iq. 7 to zero leads at once to

[41]

n

or

= [43]

s

Bl
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This value is a straight average of the dependent variable. The solution
obtained by equating the & of Eq. 8 to zero is to be disregarded for a
reason similar to that given in connection with Eq. 35.

That the procedures based on Eqs. 34, 38, and 41 will lead to different,
values for ¢ is evident. The explanation is that they tacitly ascribe
different weights to the observed pairs of ®, T values. Assuming values
for T precise, consider what changes in weights have been facitly given
to the measurements of ® in shifting from the procedure hased on Eq.
34 10 that based on Eqg. 38. The answer is indicated by Eq. 33 of Chap-
ter IX which expressed the law of propagation of probable elrdes and
other precision indexes for the general case. Simplified [ orot\}}eg present

case of only one independent variable, it states that £\
d(In ®) 1 N "
Pua = g 2T P S

Sinee weights vary inversely as probable errars, squared, we have
X' »

A
(wmah _ (pa/R)s% }f‘ﬁ P
(el (Pa/ @1”2. Re® pap”

Assuming that all pg's are equal. this means that the corresponding
@ww&r%; irary org.in . o
values of In ® should be weighted as the squares of their own ®'s. If
such weighting is applied ’whéh starting with Eq. 38, and one is able to
consider the fractionalficviations (® — 2)/®—® represents u least-
squares curve valugand @ u corresponding observed value—so small
that their second ardér effects may be ignored, it is possible to show that
the » obt-ainegl.\'is “the ¢ of Eq. 37. To the extent that those second
order eﬂect&{pame]y those due to the higher order terms ignored when
In[l — (®& R)/@] is replaced by (® — ®p)/® in the series expan-
sion, ?ﬁ%sﬁot negligible, the ¢’s based on Fqs. 34 and 38 will differ.
Inpecord with the above, when the shift was made above to Eq. 40
\aﬂlﬂ its In ®'s were treated as equally weighted, the weights tacitly given
N fo the &’s (not In ®'s} vavied as 1/02%,
Similarly consider the weights tacitly given to the measurements of
(® when the procedure initially based on Eq. 34 was ehanged to that
based ont Eq. 41, Here we obtain

[45]

~

@R/ TH 1 ..
Py = ——d(R Pa = FP@? [46]

and
w9l _ pa/T T4 pa®

fogrsls (a/THE To® N
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Assuming as before that all pg's are equal, means that corresponding
values for @/T* should be weighted according to their own 7. The
weights tacitly given to values of @ (rot ®/T*) when the shift was made
above t0 Eq. 41 were as 1/T5. That weighting @/T* as indicated above
actually gives the same value for ¢ a5 does Eq. 37 may be shown. With
such weights given, ag may be verified with the aid of Eq. 7 modified
to include weights, we have, corresponding to Tgs. 42 and 43

Zwa/ T
¢= 48]
d Zw ~
an
ST3wm/T*  ZRT* .
= = 9]
zTe S(T4? A\

the latter of which is identical with Eq. 37. Equivalence I@}'\the end
results may be shown but not so simply when the first andse¢ond pro-
cedures arc similarly tested. However, the conclusior}wfﬁ.ll‘ows that with
proper account taken of changes in weight for thé\dependent variable,
it matters not, where only one constant is invg]{cd, in which of many
interchangeable forms the data are given least-squares treatment.

The foregoing does not indicate in any Way that, in an actual deter-
mination of ¢, cqual weights should be,g;i{fen to the ®’s rather than the
In @’s or the ®/T¥s. SN

7. Probable Errors for the Ledst*siRsubibcenseaifidnof a Linear
Equation Obtained from a Set of‘Equally Weighted Points. Here one
may follow the procedure of seetion 6 of Chapter X, p. 229, for obtaining
the probable errors of adjusted measurements. In so doing, he should
note that the symbolaac}\this chapter which correspond to @1, @2, @, b
and X of Chapter Xoiw order arc a, b, 1, z and . For the least-squares
straight line, th;{t:t;\reatment vields

2\ Exf!
“ NP (50
'.~\\ Pe = Nisi — @i

PR J'?‘* -
\3“ Py = ;mpyu _

If pyo is not known, it may be computed, using the defining equation

S0 — & — bz)? Sy — a — bx)*
pay — 067540 2 T gz 52

n—2
Expressions for p, and p; not involving pyo may he obtained l_)y ¢om-
bining Kgs. 50, 51 and 52. More simply they may be obtained by

form, the factor n — 2 replaces

! Bee footnote on page 167. For the more precise
arbitrary parameters,

the more commenn — 1. The reason is due to the fact that twe
@ and b, are involved. (See Birge, Phys. Rev., 40, 207 (1932).)
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applying directly the defining equation for a probable error, Eq. 24 of
Chapter VIII, p. 194, Assume that: n straight lines are drawn to con-
nect the n observed #; ; points with the point & 7, that the probable
errora for the a; and b; for these lines are proportional to 1/(x; — &),
and thus that the weights to be attached to the e; and the b; vary as
(z; — #)%. Onc then obtains for @ and b the values given in FKqs. 9 and
10. Applying Ea. 24 of p. 194 for the case of yy's of equal weight
(nz? = Zz?, ete.) we then obtain

T 2 - %y + 2y |
po = 0.675 \jn—_—2 [x ! = =] s
and N,

= i O
, L [#A=F \ >~ 5
py = 0.675 \/n_—_§ [W -k R N [54]

8. The Parabola, y = a + bx + cx? with y\Ofly Liable to Error.
The procedure here is quite like that for the stzaight line. The assumed
eguation Is K¢ Ny

¥ = & + bagde” [65]

There follow

3 RO
— [Z(yo — acsbr — exH)?] =0
a@rww.dbl‘apl’iﬁral‘y,org,jn

3 N
— [Z{s — a — bz — @})?] =0 [56]
8b "

p \g[z(yo —a—bx— e =0
K¢ \ / an + bZx + ¢Z2? = Iy,

\:\ aZr + bZa? + ¢Za® = Sy [57]
\ aZz? + bZa® + Tzt = Taty,

~ |
N\ . { + [Z22e® — (227220
{[Exzzm‘* — (25580 — (ZaZzt — Z032*]2=

\ : ST LS4 3y

N [[Z22at — (2e%)*] 2y — [ZrZat — L2282 Zay,
+ [Z2Z2® — (T2H)?22?

b ]

=5 [48]

1

J

[Z2’Za® — ZaZat[Zyy — [(Z22)? — nSz]Zay 1
| 4 [Z2Z2? — nZa®)Zatyo)
!

{[1‘.’.3;22:1:4 — (2% — [Ba20* — 222223
+ [Z2Z2 — (Za?)?)2a?|
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[ [ExEa® — (T ]2y — [nZe® — ZaZa®]Zay
N + [nZ2® — (C2)*)2e’yo|
[[2:52233* — (Zr*%n — [ZxZa* — Z2'T)2x
+ [Z2Z2® — (22?2 Z2®

The denominators for the last three equations are identical.

lixcepting certain types of cases as will appear in a later section, the
least-squares method for equations other than the straight line are gen-
ally quite laborious. Here, however, much more than in the straight-
Jine case, much time is saved if & convenient approximate solution ig\
assumed und the leasi-squares principle is applied to the differences be-
tween the observed values and those predicted by that assumed relation.

9, Application of the Least-Squares Parabolic Equaﬁgﬁs.}o the
Smoothing of Tabulated Data. In Chapter [ 1t was indigated that a
certain smoothing relation (Fq. 1) was based on the leadtisquares prin-
ciple. Tt is now possible to show how the equation,ifmely

v = = Uy + 12031 +y-0) — 3@ Ty-2]  [60]
a5 ¢
may be derived, Here 4 is the tabulated Wismoothed value correspond-
ingtoxy. Similarly yys, 41, ¥—1, and gy arc the tabulated unsmoothed
values corresponding to zq -+ 2%&%,%%&1&}3}3%?%(1 Ty — 24z,
and y ix the smoothed value whichs to replace yo. Only five points en
an assumed plot representing(the data are used.

For the proeess of smoagthing at any particular x, say o, much time
is saved by a change of\¢oordinates. Let & be replaced by &’ [= (x —
20)/Az]. In the new boordinate system, the points to be treated are
(2,y52), (|,y+1),.(0,y:,), (—Ly_1), and (—2y-2). The least-squares
relation soughtyig

\:\ y = a -+ b’ + o [61]
Since \\-'c}.\a-}e concorned only with the smoothed value for y at x, we
necd Nty to evaluate @ of Eq. 58, which is the smoothed value sought.

:t:métioxl, seeming long at first sight, 1s actually made short l;y the
chahge from « to «’ and ¥ to 3. It will be found that 2o’ = 22~ =0,
that 2z? = 10, and that Zz™* = 34. There follows

__(3403y — 03wy — 1002 (62]
“ = 340 X 5 — 0 X 0 — 100 X 10)

- 3i [17g0 + 12041 + y—1) = 342 +y-2)] (631
]

which js the rolation sought.
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10. The Polynomial with x-Values Equally Spaced and Exact. A
most comprehensive study of this particular field has heen presented by
Birge,' Condon,? and Birge and Shea® A generalized, compact formula
developed by them is presented in the paper last referred to. Tt will he
discussed later. First, however, we shall discuss certain results and pro--
cedures which by virtue of the computations reported by Baily * and by
Clox and Matuschak ¢ are more readily applied.

The treatment of polynomials here given refers only to equations of
the form )

y=a+be+e?+dd - N64]
Further the assumption is made and if necessary the data ard 2n manip-
ulated (1} that the observed values of ¥ are equally weiglited, (2) that
the suecessive values of # differ by a constant, (3) tha,t}(th’.e values of
are exact, and (4) that the values of « are arranged sg}nuhetriml]y with
respect to a central value. Illustrative of the»ﬁhﬁp]ifying effects -of
these econditions, it has already been shownJinthe preceding section
that, under the stated conditions, the rathesformidable general expres-
sions for the constants a, b, and ¢ (Eqs, 58),0f the least-squares equation

for the parabola AN
P y = a-+dpt ex? [55a]

reduces to rather simple e rgs&"ﬁs.‘ ,

Treatments in accor Kﬁ%}ﬁlga%ﬁ%& “Sthted conditions usually require
a change of independent 15-'&1"izib]e from z to X. Thus, where & represents
one-half the sum of the. ipitial and final valucs of z, Az is the common

z-interval, and the {tkmb(}l of pairs of valucs is odd, X is defined by

r—2

\ ~ X, = = [65]
In case \na&}vcn, X is similarly defincd by
' x— 3
A\ X, ="~ [66]
Ny Az/2

'\ .
\Tﬁus defined, both X, and X, are whole numbers with both negative
and pogitive values. Yor the odd serics the values are

=3, -2, -1, 0, 4+1, +2, +3, 4 --
for the even series

oo =B, =3, =1, +1, +3, +5,4 -
1 Bivge, Phys. Rev., 13, 360 {1919},
*Condon, k. U., Unde. Calif. Pub. in Math., 2, 55--56 {1927).
i Birge, R. T, and Shea, J. Tt; 1hid., pp. 67-116.
‘ Baily, J. L., Ann. Math. Siotistics, 2, 355 (1931).
5 Cox, G. C, and Matuschak, Margaret, J. Phys. Chem., 45, 362 (1941).
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A simplification of Eq. 58 follows becausc now all summations of odd
powers of X are equal to zero. As a result the g, b, and ¢ of Eq. 58,
now the o', &', and ¢/, of an equation in X similar to Eq. 55a, reduce to

zx* X2

r_ i 2 . 5
S GG Co R S G- C e
= kaZy — ki ZX%y [67]
WV=- ”Z‘w EX I EX
V= s XPEXT — (zxTp oY = ReEXY [68]
Q"
n zX?
- - 2X2 - £
CTExT - x Y T amx — x Y O

= ksZX% — BSy [69)
The #’s are seen to be functions of X only and as such ha;vfe been tabu-
lated by Baily not only for the polynomial ending with\X? but also for
polynomials ending in X and X3, The various kg entering and their
designations by subscripts are shown in Table ¥[of Appendix 2, and
values for these k’s, as computed by Cox and Wtuschak, for2 < n <51
arc presented in Tables VII and V1I11I. Theiigh given to eight significant
figures in these two tables, usually a zpuéh ‘smaller number will suffice.
Wherc the tables are applicable, computations are very greatly reduced
by their use, : . www dbraulibrary.org.in
lustrating the applicability of the method, let us consider certain
data concerning a lahoratory(experiment relating to gravitational accel-
eration published by 5h.’1 Though originally presented for least-
squares treatment by l;ﬁiﬁerent procedure, they suffice well for our
purposes. Using a,\alling-body apparatus with spark recording of
positions at the ehds of successive 1,30 sec intervals, the data given in
the fiest two c(\jmﬁms of Table 111 were obtained. The equation relat-
ing distanc@na time is h
R\ s = so + vol + 39 (3]
in Mhi;c\i.l’s and ¢ replace the y and z of the preceding discussion. In
aiﬁs@r}i with Eq. 66, the origin for the time axis ig shifted to midway
between the ends of the Tth and the 8th time intervals, and the interval
of time that corresponds to a change of 1in X is 1/60 sec. In the new
coordinate system, in which £ is replaced by ¢ + X At/2, Eq. 3 becomes

s = (so -+ vl + 398 + (Guodt + 2gia)X + [g(an?x®  [70]

The successive terms in parentheses in order correspond to the &/, b', and
¢’ of Eqs. 67 to 69 and Table VI of Appendix 2. Since the acceleration g

1 Pugh, E. M., Am Phys. Teacher, 4, 70 (1936).
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TLLUSTRATION O

TABLE 1

r THE APPLICATION OF BarLy's anD Cox aND MATUBCHAK'S

Merrop To Fanung-Bopy Dara PRESENTED BY Puee ! For Usk N DRTEHMINDGGG

TEE (JRAVITATIONAL ACCHLERATION ¢

3 7
X
in units of inscm X in crsn
1/30 sec :
- S
1 11.86 -13 2,004. 34 ¢ = kX% Akaks
2 15.67 —11 1,506.07 Iy = 21,46%082)% 107
3 20.60 -9 1,668.60 ks =13 ggﬁsqa N LE
4 26. 69 -7 1,307.81 kX X33 1. 40385 em
5 33.71 -5 842 .75 N 1.,26093 om
6 41.93 -3 377.37 | e 20.13502 em
7 51.13 -1 51.13 NAAt = 144 see
8 61.49 + 1 61 .4 2% L ., tm
9 72.90 3 656;1&' 9=y~ V0
10 85,44 5 2 1315..00
1] 99.08 7 A, 854 92
12 113.77 9 . 9215,87 ,
13 120,54 11 o 0%5.674.34
14 146,48 wwrw. dbi'auI lb]“al‘gﬂlﬁ‘ﬁé,ﬁﬂ
Totals | 910.20 | A 65,501 .41
. AN

7\ J
1 Am. Phys. Teacher, &, 1{{\1936}.

only is desireds,suffices to solve for ¢/, using the tables, and then for
g, whosc vahle is given by

N

2 &

“\s

8(:!

‘"

[71]

C‘s@me of the details are shown at the right in Table I1TI. As is evident,

~ jthe procedure ig not unduly prolonged.
In many instances dats that may well be given loast -squares treat-
ment similar to that above are subject to the theorctical condition that

the constant a of Eq. 64 is zero.

One may be tempted to meet this

gifficulty in the application of the Cox and Matuschak tables by dividing
hoth sides of Eq, 64 by =z, treating ¢/x as 2 in the equation

Z=b+ertded 4o

[72]

and then finally returning to the original form of Eq. 64. In o doing,
however, the original y-values will no longer have their original equal
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weights, but instead will be tacitly given weights proportional to their
corresponding z%’s.  Tables similar to those by. Cox and Matuschak
computed for the case of ¢ = 0 would be much appreciated.

Consider next. the more general formula of Birge and Shea, already
referred to. Their form for the polynomial equation of the jth degree is

¥ = Qoj + oz + agz® +- -+ [73]

Curiously, all cocfficicrits, aq,« - -a;;, can be worked out as definitely
related to final coefficicnts of the form aj; of which the 7 is not always
the § of the polynomial sought. For the coefficient a;; they found « N\

= 1Y C
Qs = u — 25+ 1)! Ll (or V- S -2
7 @u+j + 1}1(3‘02 r=0or 4 Yo N )

4 (-1 - 01w — 9G4+ o!
Led (1 — 71 — 8)1(2u — G- sn?

where n represents the number of observatigli&,\ﬁ equals M4(n — 1),
and ¥ and s are parameters with successivgn?:alﬁes differing by unity.
For n odd, the lowest value of r is 0; for @'eVen, ¥4, In case j is even
and 7 is 0, but for no other case, the eentral member of the above ex-
])I‘eSSi(]n for Gji i Yo rather than Wﬁ@&gﬁ%@gﬁr org.in
For the condition j = 2, the coefficient az2 ma,ybit)e Sbtained from a
direct application of the abovesequation, and the remaining coefficients,
¢pz and ayz, may be detcrpgi;@ed from the following
L\ nt —1
" :.\002 = Qoo ~ T Qg2 [75]
and P \%
" '\“ 1z = 1 - [753]

7\
For other y%i’es of j the reader is referred to the original paper.

11. Least-Squares Procedure for Relations Other than Those Ex-
pressible in Power Series. Generally, a procedure involving an a.ssum(l:d
am&’f“imat{: relation as illustrated above for a simple straight Iine vtqll
simplify and considerably shorten the computations L:onnecte_d with
many least-squarcs determinations. In fact, in some instances, pro-
cedure is extremely difficult or even stopped wherel sl_lch advantage of
an assumed approximate relation is not taken. Thla.s iz the case whe.re
the equation does not form or cannot be converted into a power series
with the constants sought or some functions of them a3 the coefficients
of the power terms. Illustrating such & relation, we have

y = asin (wi -+ b)

(74]

[76]
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with a and b to be determined. This relation will be treated in some
detail in the following section. Another relation is

b
Y= G-i-;,; [77]

with @, b, and ¢ to be determined.

Let y = f(x) be a desired relation of knewn form involving undeter-
mined parameters a, b, ¢, etc. Let i’ = f(x) represent the approximate
equation. We may write, in aceord with Tayler’s expansion

Q"

Ay=y—y’=(gy)A +(ab)Ab+( )ac+\- [78]

In evaluating the partials, as buggested by the prlmes, the assumed
values of a, b, ¢,- - -, ag expressed in § = f(x) are used.) To illustrate,
whare y = f(z} takes the forms of Egs, 76 and 7%‘\\& are able, using
the approximation principle, tc reduce the prablems to finding the con-
stants Aa, Ab, and Ac for the following: NY;

Ay = sin (ot + b') X Aa F a’\:ﬁs (wf + b") X Ab [79]

¥
Ay—Aa,+—Ab—bhmAc [80]
ww%ar dbrau‘]ibt%r“y org.in

The quantities o', ¥, ant} e\ Are constants, obtainable by one of the
methods of Chapter II¥A The equations are linear in A, Ab, and Ae
and are subject to stahdard least-squa,res treatment. Since the partial
derivatives inv olve\q b, or ¢/, it is of importancc that the assumed
relation shall appreximate the final relation rather closely. If the first
approximationGs not sufficiently close, a sceond may be required.

The equétions vielding Aa and Ab of Eq. 79 are obtained in a manner
similar o that yielding Eqs. 9 and 10, from which @ and b were obtained
in tlre\straight-]jnt case. The equations obtained are also similar.
W hgtn three corrections, as Aa, Ab, and Ae, arc involved, the procedure

~isdike that deseribed above for the parabols, and the cquations have a
certain similarity.

Once Aq, Ab, Ac,--- have been determined, the corrected values for
a, b, ¢, - - are obtained readily, sinec they are mercly @’ 4 Ag, b + Ab,
& + AC, [

12. The Sine Curve with Angle Measurements Free from Error.
The procedure which we shall follow here will differ slightly from that
suggested in the preceding section. Tt will be simplified to the extent

that we shall assume an &PProxnnate value for the b but not for the a
of Eq. 76.
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TABLE IV

257

BuowiNG 4 CoNvEXIENT Foam For MAKING COMPUTATIONS, AND SAMFLE COMPU-
raTIONS LEADING TO 4 LBast-8quarks EquatioN oF Tae Fonm Yy = asin (wf — €
N Accoro wite Eqgs. 81 10 86

{Certain of D. C. Miller’s sther drift data ! interpreted as showing azimuthal angu-
lar motion with respect to the ecliptie are here used. As ¢, 0.15 X 860° has been

chosen.
O\
+
, ] M . i veros # | pysin # ) 2
su:icrcal dey deg cng & zin deg? deg dex ooa @ sin & K \c &
ERSS w
- _ | NS ©
- ] & N
0.00 1 =51 | —25 | 05w | —0.809 | 625 | —14.70 | 20.22 | —0%usT | 0.3457
0.05 —a6 | —28 0.800 | —0.588 676 | —21.03 | 15.20 |/50:4757 | 0.8545
0.70 -5 | — 4 0.951 | —0.300 16 | — 3.80 | 1.24{ &0.2030 | 0.008¢
015 0 7 1.000 | 0.000 49 7.00 | (R0 0.0000 | 1.0000
0.26 18 & 0.951 | 0,509 6 5.71 [N\W35 | 0.2030 | 0.5044
4 )
0.25 6 13 0.809 | ©.588 160 | 10.3MW 7.4 | 0.4757 | 0.6545
0.30 54, 50 0.58% | 0.809 o6 | 1%e4/| 2827 | 0.4757 | 0.3457
0.35 72 26 0.200 | 0.051 e (NCRB3 | 2473 | 0.2839 | 0.0955
0,40 90 32 0.000 | E.000 | 1,024 ANMLOO | 32.00 | 0.0000 { 0.0000
445 1 108 40 | —0.308 [ 0.951 | 1,600 [MS12.38 | 35.04 | —0.283¢ | ©0.0055
0.50 126 32 | —0.588 | 0.500 | i.’lzgi -ialﬁ | 25.88 | —0.4757 | 0,347
0.55 144 21 | —o.s09 | 0.ass Wy braiararis.org.iny grsy | 0les4s
0,50 162 11 | =051 | 0.30B 121 | —10.46 ] 3.40 | —0.2080 | ©0.004¢
.65 % | — 5 | —1.000| D000 25 500 0.00] 0.0000 | 1.0000
070 | —162 | —16 | —0.951 <n.3ug 256 | 1522 | 4.94 | 0.2039 | 0.904¢
0.75 | —141 9| - 2.43| —1.76 | 0.4757 | 0.6545
e ' 12 441 | 12,35 | 18.90 | 0.4767 | 0.3457
0.85 ; —108 4584 6.80 | 2092 | 0.2038 | 0.0955
0.80 | — m 841 0.00 | 29.00 0.0000 | 00000
0.95 —72 1,024 | — 9.89 | 30.43 | —0.2039 | 0.0053
~ 10,457 | —22.22 § 307.44 | 0.0000 | 12.0004
\' “':
'\'\\ X
o\ — (—22.222
N - 1 _ 10437 X 12,0004 — {—2222)F dog — 34.00°
o N A 80744 X 12.0004 — 0.0 —22.22)
7
R 3

Ve

10437 X 0.0 — (—22.22)(30748)

10437 X 12.0004 — (—22.22)%

L

1 Fen. Modern Phys., & 203 (1930).

3
= 34" 54" rin (

=¢+3=54"+3°7 =577

o
60 t— &67° 7')
sid. day

rad = 00643 rad = 3°7
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Assume the desired form of equation to be
y = asin {wl — € [81]

where & and e are to be determined. From a plot of the data, cstimate
in advance, as is usually pessible, an approximate value for ¢, say ¢
Let & represent (¢ — €); 8, the angle {wf — ¢); and A, the term /e
Kxpansion of sin (# — 3) in terms of sines and cosines leads al once to

Ay —sin -+ deosd =0 [82]

In determining the least-squares equation, A and 8, in terms of which
the equation is linear, arc to be evaluated. Regular procedmc\yiulds

T(Adyo — sing + beos )’ =6 =a minimum'\ ’ [83]

of which y, represents measured valucs correcspomhﬁg Ao appropriate
values of 4. FEquating 3¢/94 and a¢/38 gepara’rel{to zero and solving
for A and 3 as before, leads to

AZye® — Zyp sin § £8%g0 cos § = 0 [84]

AZyo cos 0 — Z eos 0 sin) 9} 5T cos?8 = 0 [84a]

Eyg sin § T cos? 0.5 Ecoqasinﬁzyo cos 8 [85]
wwxza'hl)ﬁkm‘ﬁraq i o@ iy COS 8) ?

_ 22 cos B8in 8 — Ty cos 8 Syo sin 6 (6]

23@22 cos? 0 — (Zy, cos 6)2

Insertion of values ‘qu A and 8 in Tq. 82 gives the relation sought. In
casc the first estihated € yields too large a 4, repetition of the process
with a dij"_feljt;nif ¢ will be necessary. Table IV, which deals with a
simple casgpshows a convenient form for carrying out the eomputations.
Probahle errors for o and ¢ may be obtained by following a procedure
muchike that for the probable errors for the constants ¢ and b of a
stra:xght—lm(, wuation.
(18, The Least-Squares Equation of the Type y = a + bx when
\Blabxhty of Error Occurs with Both x and y. Although mathematically
we may consider z an independent variable with values arbitrarily
chosen and as such not liable to crror, in reality in physical problems,
such is not always the situation. Frequently neither @ nor y can be
zald to be more independent as a variable than the other. Both are
measured and the values obtained for both are subject to errors of meas-
urement, Congider the case of the measurcment of the temperature and
the radiancy of a black body for some particular condition of operation.
Buch is the justification for that which follows.
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Since « and y will generally differ in physical nature, it is necessary
to treat cortain simple functions of these variables rather than x and ¥
themsclves.  These functions must be either dimensionless or expressible
in the sarc physical units. Otherwise there seems to be no logical way
of properly weighting them. Starting with

¥ =a- bx [87]

as the relation sought, we first express x and y, in effect, in terms of,\

their probable errors as units, writing

O\
X " o
Py = 6 bpe— O8]
'y P P ,":.‘
Then dividing through by «, we have L \
gY' =1+ aX’ \ [89]
>

where @, 8, X', and ¥’ stand in successionder bp./a, py/a, #/p., and
¥/Py  All quantitics are now dimensionlegsyiind the probable errors of
both X” and ¥’ arc unity. N

Imagine & plot showing ¥’ = f(XOwathAensame soplg, (this is im-
portant) for both X’ and ¥’. 'Lhe\problem is now resolved to that of
finding the straight line to which {7, the sum of the squares of the
perpendicular distances fremh the points to the line, is & minimum.
Stundard procedure, usi&é\dbservcd values for X’ and ¥, yields

. ? na
'“:rj;= (1t + CEQX —‘Bﬁy) [90]
) o« + 8
K7, '

Applieation\q’f}fﬁe least-squares principle, namely, that the partial de-
rivatives 0’6\;6‘0: and a0 /48 shall he scparately cqual to zero, yields
equations which arc 1o be solved for a and 8. If then o, 5, X', and Y’
arg'faplaced by their equals in terms of g, b, z, and y, one obtains ex-
Dl"kifmﬁ which may be solved to yicld the desired values for a'and b.
Differentiations of Eq. 90 with respeet to o and to g separately yield on
slight rearrangement,

f

. v 17
E {(1+aX’—6Y’)(;_§+§)]
3 (XL z’i)}

l{l—i—aX "ﬁYJ(“a+a2+ﬁ

0 91]
angd
0 [92]
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Combining Fgs. 01 and 92, keeping in mind that the summation procoss
prevents equating the indieated factors separately to zero, we obtain

A4 oX —8Y)=n+oZX' — ZY =0 193]

Replacing a, 8, X’ and Y’ by their equivalents and solving for e, one
obtains

(Zy — bZ) [04]

Similar treatment of Eq. 91, together with the elimination of a by Dieans
of Eq. 94, leads to a r:‘eo:md degree equation in b, namely O\

: (py/p) [(Z2)* — nZa?] — [(Zy)* — nZy*] )
b 4o Eny — nZxy ( 0 [95]

Togs. 04 and 95 may be solved to yield the demred}% a.ud b. For values
of p, small in comparison to p,, the value of Neduces to that given by
Eq. 10, which was derived for the case where’y only is liable to error,
Similarly the value for a reduces to thatigiven by Eq. 9.

Though occasions justifying the applieation of Eqgs. 94 and 93 oceur
rather often, their use seems to hé, véry infrequent.

14. Criterion for Closenﬁ of]% When one determines by the least-
squares method an empiricals (quatla?{'%lfgfh?: form, say

L= a + ba + ex? [65¢]

to represent ohserved\data, certain questions sometimes rise. Lior in-
stance, is the ex” termy neecssary?  Or, should another term de® be andded?
It is obvious thaty/if ¥ is a single-valued function of x, and there are #
pairs of valugdriven, an equation similar to Eq. 55¢ containing n terms
on the 11;3Q%\ilm1d side with n arbitrary constants could be derived which
would fib-the data exactly. Nevertheless, the data may not justify the
use, of more than two or three torms of the power serics.  For the deci-
smn, a criterion is needed. That which is used, exeept for certain simple
““eiSes, is based on (Gausy’ mean-squarc dewatlon

A simple case, such as has just been referred to, arises sometimes when
the data, y = f(x), are in tabular form with values of y tabulated to
correspond to equal intorvals of . As indicated in Fable 11 of Chapter
ITI, the successive differences may then indicate the form of equation
which will represent the data suitably. In particular, if the successive
dilferences of the nth order of y fur a constant Az are constant or vary
therefrom but slightly and then only in & haphazard manner, the f (@)
takes the form of & polynomial in = with n as the highest exponent.
Accordingly, where the original data are such as to yield tabulations
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of the type referred to, suecessive differences may indicate just how many
terms of a polynomial are justified. Where such is the case, this pro-
cedurc of obtaining successive differences is the siaplest for determining
how many terms shall be included in the f(z) polynomial. On the other
hand, such successive differences may leave some uncertainty as to where
approximale constancy actually oceurs, and there may then be need of
a more positive test as to the number of terms for the best polynomial.
Of course, Lhis simple test is not applicable at all where the y-values do
not correspond to z-values at regularly spaced intervals, or where the
equation aclually representing the data does not belong to the groug ™\
of equation= which ¢an be tested in this manner. N

The CGauss criterion states that the closest fit is possessed lgy‘ﬁm
equation that yiclds a minimum for the quotient obtained when the
sum of the squarces of the deviations (or residuals) of the obgéryed from
the computed values for g is divided by the number ofzobserved pairs
of (z,9) values luss the number of arbitrary congtants ‘involved. In
aquation form, with n as the number of observed PfkiTS and » the number
of arbitrary constants or free parameters, the criterion s

2 N\’
= M =8 Thifiimum [96]
#o— m ™

LN N

]

Application to determinc the mogi“?ﬁrl%ll) e”%&ﬁ%‘%'ﬁrﬁ"ﬁ‘ot the real
purpose of this eriterion. Ratber 1t is of value in determining which of
two representations is the yiore suitable—to answer, for instance, in
some particular ease qu m‘\é}n’s like those asked at the beginning 'of this
seetion. At best the lrnﬁiess is likely to be rather long and fedious.

An intercsting applieation of the foregoing criterion has been made
by Wensel and "Tiie erman,! of the National Burcau of Standards at
Washington, 1. ¢ A published paper on the thermoclectric power of
thodium as.wzfnction of temperature for the range 850° C to 1350° C
seemed to‘j.%how a discontinuity oceurring at about 1100° C. As a con-
sequenes, the original authors in presenting equations to represent their
datd gave two least-squares relations of the form of ¥a. 55a, one for the
rang 850° C to 1100° C}, the other for the range 1100° C te 1350° C.
After reviewing the work, Wensel and Tuckerman decided to apply the
Gauss criterion. They compared the Q-value aceording to Eq. 96 for
two least-squares parabolic relations each jnvelving three free param-
efers and each covering one-half the full range with the O-value for
& single parabolic relation covering the whole range. It was “_‘*‘deed
to the comparison of a it involving six free parameters with one Involv-

' Wensel, 1. T., and Tuckerman, L. B., Rev. Sci. Instruments, 9, 237 (1938).
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ing only three. (See Fig. 16 of Chap. T, in which the authors present
the two points of view graphically.)

The results obtained by Wensel and Tuckerman are shown in Fig, 2
and Table V. It is seen that the single parabela covering the whole
range viclds the smaller value for the eriterion expressed in Eq. 96 and
thercfore posscsses the closer fit. Ineidentally it was concluded that

\,/ \{“4 <\

Em

c:;
I—l
a
s
>‘.,
'/

|
200 1000 2200/ 1400
Temperatu re{ n i

Fic. 2. Showing deviations {y; — %) betw,een ahserved and lcast-squarces emf’s for
rhodium against platinum for cases (41) ) “paraholic relation for the runge 850° C <
T < 1100° C, (B), a parabolic rc]a»tlon For the range 1100°C < T < 135607 C,
and (€}, a parabolie relation for Bhe range 850° C < T < 1850° (2. The results
are summarized in m}éwc_lbyjaglibrary_org.in

the supposition of & thEN‘rloelectnc discontinuity is not justified. Inci-

dentally also, in \’{ﬂg\ of precision index considerations, it would seem

— 7
that the values ,gl,\-'en in the table for 0, M , are not significant
A/ - "
to the oxtm@“shown.
&
AL TABLE V
& % ’
S FHOWIKG CERIAIN DETAILS FOR THE APPLICATION 0¥ 1HFE CRIIERION
NY ror CLosENEss OF 111, A5 APPLIED BY WENBEL AND TUCKERMAN
¥y [The data contsined are those plotied in Fig, 2]
n " S 3
No. of No. of free Sl —y:  n—m
Case obgervations  parameters n —om  in (pv)? in (uv)?
Two parabolas 14 & 8 0.0434 0.00542
{Oue parabola 14 3 11 0.0527 0.00479

15. Summary. Of the many products of least squares, among the
most valued i3 the method it provides for detemumng the arhitrary
constants for a best equation of a specified type to represent obquVLd
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data. The types here considered are limited (1) to those involving two
variables only, one independent, the other dependent, and (2) to those
possessing linearly related arbitrary. constants or such structures that
those constants or functions of them may be linearly related.

For the case where the specified linear relation is given by

y=a+ bz [4]

it 15 ecommaon, but not necessary, to assume that the y-values only are
gubject fto variation. The condition that the sum of the squares of the
deviations of the obscrved 4% from the ¢'s given for the same s by
the least-squares equation shall be a minimum, leads, when applied{te,
definite expressions for & and b. TFor equally weighted values of“yy, %
in number, they are ~\ by

_ ZxZyy — Ty ) ‘ ) (9]

T nZa? — (Sw)? S

#DTYy — 2Ty N
=32 g 2,
nZz® — (2x) R

For ye-valucs having varying weights w, the'equations become instead

[10]

_ SwxZwyp 7’2m$zwxyn [21]
szwx%&fw%@%ﬁlibl'ary.ot'g.in

ZwZugy, — ZwaZwyo _ 2]
EwZwa® — (Sws)®

N\ .

Many cquations magnbe altered in form to make them effcctively

linear and thus subjeCt;to least-squares treatment.
Disregarding wiights one may obtain more than one least-squares
value for a y%cigiconstant by using the same basic relation expressed

differently, Ao the first radiation constant, for instanee, we have for
the cquallyweighted forms
o =nT? 37
& \ud F = S (371
\ } = (T4)2
o W{M] [40]
T
and
l_® :
Tt

It is shown that, when onc shifts from one to another of 811!3].:[ forms for
tly given to the

computation purposes, changes of weight have been tacl
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different items of data and that, when allowances are made for these
changes, the same results may be expected by the different procedures.

Probable errors, p, and p», may be eomputed for the constants of
a least-squares straight line which has been obtained for an equally
weighted set of points treatment in accord with that shown in Chapter

X, p. 229, yields ) \/——W——
Pa =N 5

- P 50
n2z? — (Zx)? Py 130]
and
\/ 7 N\
. 0 51
. P Nz = o o
of which pyy is given by : . A\
E(yn —-a—ba)* N\
2yo = 0.675 —— M\ (521
n—2 N\ 2

Expressions for p, and ps, not invelving pye, ob’l\sﬁm xd from Egs. 50 fo
52 or derived from independent conside rations are

1 =575 o | 5.3 ‘ _
0.675\/ - '[“’2'” .~’2@$y+w——a-’] (53]

Pa n— 2 S8 _ fz
and
=7 .
Py = 0.675 \]n = Lﬁ — 2 bz] {54]
Iy WWW. dblta’u thrary.org.in
The parabola = o+ br & ea? [55)

treated in & mannep-Similar to that for the straight line yields the
cumbersome exprégsions of Fqs. 58 for the constants a, b, and ¢. How-
ever, when cerfain conditions arc fulfilled these expressions are much
simplified. | 7~
For the,Special conditions (1) that the given or observed values of ¥
are cqually weighted, (2) that the successive values of z differ by &
congtant, (3) that the values of z arc exact, and (4) that the values of
% ‘ake arranged symmetrically with respect to a central zero value, the
”~ iéast squares equations for the evaluation of the arbitrary constants for
S\ polynomials, involving 2-terras up to at least the third degree, are all
greatly simplified. A change of variable from # to X to meet condition
(4) is neeessary, and to make the difference specified by condition (2)
the numeric 1 is convenicnt. For the cage that n the number of pai:s

of values is odd or even, X ig defined by

(){_ﬂ _t= :i:) 1651
Ar /noad

(Xg _r- :E) (66]
AJ:/Z # CVeD

or by
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With this ehange each coeflicient of the least-squares polynomial be-
comes expressible as a single term or as the difference between two
terms, each of which consists of the produet of & function of z and a
summation such as Zyo, TXyo, ZX %y, or ZX?y,. The method of com-
bining the funetions of X due to Baily is shown in Table VI of Appendix
2, Values for these functions of X, as tabulated by Cox and Matuschak
for values of » up to 50, will be found in Tables VIT and VIII of Ap-
pendix 2. With the aid of these tables, many otherwise rather formi-
dable least-squares evaluations beeome rather simple. A generalizeds
expression for the coefficients of a pelynomial of any degree as developed
by Birge and Shea is given by Fq. 74. N\
In certain instances the equation connecting obscrved datalé?mnot
be transformed directly to yield a linear relation connecting, the co-
efficicnts to be determined. In this ease with y = f(2) repz‘esenting the
desired relation, and g, b, and ¢ the desired coefficients™(}) an approxi-
mation ¥ = f(x) is assumed and (2) the differendeNy — ¢’} is then
developed In aceord with Taylor's serics and @rgﬁ}heﬂ in the form

UK S

S 4 : 6‘ _J"

A; =y—y’=(i)m+’(ﬁl)45+—-» [78]
da ™y ab

o

The correction to an assumed ordingty siabreatstion-ghenglacomes

Ay = sin (ot + b)EX Aa — o cos {wt + b)) X Ab [79]
e
of which o’ and b arc agsﬁl\ned approximate values for ¢ and b.

The constants for & Jedst-squares eq'uat{ion of the type

A X
7.3 y=a-+br ' [4]
\:"\s. .

when both & and ¢ are liable to error are given by a solution of the

smultansdits cquations

O o= i Sy — bZz) [94]
and )
b o Bu/p[(Z0) — nZa®] — () — n2y’] (&‘) =0 [95]
ZxZy — nixy Per

A criterion for closencss of fit for cases in which y only is liable to
error is contained in Gauss' mean-square deviation. Where yo is the
observed value, y the corresponding least-squares value, n the number
of observed pairs of values, and m the nimber of arbitrary constants or



266 LEAST-SQUARFS EQUATIONS REPRESENTTNG OBSERVED DATA

free parameters for the equation, the criterion in cquation form beeomes

_ Z(yo — y)°

n — m

Q = g minimum [96]

Of all equations, that which yiclds the least value for © is assumed to
best represent the given data.

PROBLEMS A

1. Milbkan (Phys. Rev.T, 355, 1916, Figs. § and 6}, in a determination of Planck’s
constant, h, by the photoelectric method using sodium, found that fgr\eektain wave-
lengths of radiation, ¥, certain stopping potentials, ¥ {actually, Qé\nezisured, stop-
ping potentials less contact cmf hetween sodium and eopper), ,\’{sel‘é required o just
prevent a photocleetric current in the cell uzed. Trom a straighi-line plot of Voas
& function of frequeney, ¢/, he cbtained A/e, the theoretitalslope of the line. This
he combined with the electronic charge, e, which hé¥hid measured otherwise, to
obtain A, the quantity desired. The data {these valbgs are taken from the curves
of Fig. 5, and may not check Millikan’s values prezoiéely) plotted are:

: O v
(A) N0 (Volts)
2535 0.520
WW\AS.'_lg Eram it;l'ary .org. in 0.585
36500 —0.915
4047 —1.205
g »’:&39 —1.485
X 5461 -2.045

Using Millikag’§data and the least-squares method, determine h/e. Then, using
Millikan’s 1918 walue for e, namely 4.774 X 1071 escoulombs, see how closety you
agree wi’tl(g. value h = 6.56 X 1077 erg se¢ which he obtained from this par-
t.ictﬂ[l.l“ﬁ{t, }
2 .'O}Ie of the best methods of determining the ice point on the Kelvin temper-
atuteiseale is that of determining for & gas, «, the limiting mean coefficient of press-
o {irg Increase at constant volume on heating from 0° C to 100° C, as the pressure
Japproaches zero, and computing it reciprocal. Data for such & computation ob-
tained by Beattie are given in Table TT. Using the dutu there presented as adjusted
and giving equal weight to each determination of @, and assuming the relation
ay = a + Fy p, where F, 15 s constant, eompute a least-squares value for e and
for To. Also determine its probable ervor, The supgested treatment is somewhat
different from that actually used by Beattic. Small corrections applied to ay values
to yield values cxpeeted for 1000.00 mmn-Hg, 750.00 mm-T1g, cte., and change of
the dependent variable to o, less 8 convenient funetion, will reduce the labor of
computation very greatly without affecting the result appreciably.,
3. 1f the broken line, given by y = of for the tange 0 < 8 < /2 and by ¥ =
alr—§) for the range =/2 < & < x, 18 to be represcnied as well as possible by the
single term aps8in 8, show that the best value for g is that prescribed for the firsé
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jermn of the Fourier half-runge sine series which represents the line. Civen that
instead it is to be represented by uy sin 38, show that the best value for @3 1s then the
third term of the same series.

4 On the basis of least squarcs, derive the best equation of the type y =

Z {@m =in mé + by, cos m®) to represent 20 given values for points throughout the
m=1

range 0 < # < 2r having equal f-separations. Assume the y-values to be such
that, the by/2 term is negligible. (Use if necessary the derivable relation

£ )1 S

N

O

of which @, =7, and » are inlegers.) o\
b Uszing the smoothed data for /1, = f{T) obtained in the worklng o\f prob-
lem 2, p. 27, determine leasl-squares equations of the forrns, Uy}’“} =q -+

I i Y @rr.

blog (T/T.) and 7 =@ 4 b T + ¢ q_') . Also using the “cri"E.é;'mn of clozeness
13 13 af”

of fit,” determine which equation is preferred for representingythe data,

6. Using ITalliday’s data as given below (see praph p. 1757\}10\&1115 pulse intervals
of no e-particle recepiion from an e-particle source hy“ala-particle counter, obtain
a least-squares equation of the type P = ¢ P whered™\bpresents the probability that
4 pulse interval shall be as long as or Tonger Lha,n,gt .

Interval, see  Probability e :{Interva,l, sec  Probability
0.0 0.5 0.3540 wwww AbrdulibraryldHan
0.5 1.0 2250 N 4.0-4.5 L0120
1.01.5 .1420 4.5-5.0 .0090
1.5-2.0 oqa(r\ 5.0-5.5 0040
2.0-2.5 0 5.56.0 .0065
2.5-3.0 .:{ggo 6.0-6.5 .0025
2.0-3.5 \~’~u0275

T. The average baromdtrie pressure and lemperature for the summer as a funetion
of altitnde in the rcg.j&'m of Paris are reported {Smilhsonian Physical Tables 7th Ed.) as

Altitude Pn\\sm /e Temperaturs Allitude Pressurc  Temperatire
Km aho-Tg °C Km mm-Hg G
0 0% 7600 15.9 12 o 151.2 —51.0
2N 5080 7.5 14 1.1 —51.0
Y 466.6 —-3.0 16 81.7 —51.0
6 360,2 ~15.1 18 60.0 —51.0
& 274.3 —29.7 20 41.1 —51.0
10 205. 1 —45.5
For » homogeneous atmosphere the expected pressure-altitude relation is given by
p = pe

Because of (he temperature variation, a much bettor fit is obtained, using the relaiion

p = plde ™ 4+ (1 — e
From 4 graph showing fn(l — p/py) = f(R), one may obtain acecptable values for
4 and q, Using the least-squares method, find & most aceeptable value for 8
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" 8. The 1930 determination of the specific heat of water in terms of the 15°C
calorie st the Bureau of Standards by Osborne, Stimson and Ginnings 1 vielded the

following:

Tin°C tp 'm —“g:lalc_o Tin °C ¢y In gr;dij"
0 1.00762 a5 (0.09419
5 1.00392 60 (. 90067
10 1.00153 65 1.00024 A~
15 1..00000 T0 1.00091
20 0.90907 75 1.00167 A\
25 0,99852 80 1 1)025;3.\' W
a0 0.99826 85 1. 00301,
35 .99818 an 1. 00451
40 0.99828 95 12 00585
45 0.099849 100 ,\1‘ 00721
50 (0. 90878 . \
i A
9 .\

Determine o least-squares equalion to represgﬂ‘g\th’e above data of the Lype

p = a +br For + dr®

where 7 repregents T —0° C. If a éomputmg machine is not available, round off
¢, values to the fourth ‘déé?ﬂlﬁlt}m.ﬂélbﬁ ageelgdilnes corresponding to 0° G, 107 C,

20° C, ete.

9. The van't Hoff 130(,}10?8 |: 7 In 1&,,-|

thermodynamicsl) Blopes taken from a curve showing In K,

Al
= oyt

d {in Kp)
l: d (1/T)
K, is an ethbmum\oonsta.nt AH . the heat of reaction, R tho ldt"il gns constant,
and T the a.bsolute temperature, is one of the most important equations of chernical

determ.ina@' Of heat of reaction ag a function of t.empera,ture _
Ny = 2, Lewis and von Elbe 2 have tabulated published data which in part arc 8

follow%v'
W Tm K 30
>) "log K,in A 118.1

400
86.9

600
55.8

800
40.2

1000
30.9

— A—H of which

= f{1,/T) porwit of a

For ihe reaction

1200 1600 2000
24.6 16.8 12.0

Derive (1} a least-squares equation showing In K, = f(1/7), and (2) an equating
ghowing AH = f{T) for the dissociation of nitrogen.

10. Cragoe of the Bureau of Standards (Am. Fnst. Phys, Symposium on T emPsm'
mfer ete., Reinhold Publishing Corporation, New York, 1941, p. 104) in & dis-
cussion of the “slopes of PV isotherms” of real gases culls atlention to their

“importance in atomic-weight determinations, in gas analysis,” ete.
data on nitrogen at 0° C which were obtamed by Michels, Wouters, and de Boer st
the van der Waals Laboratory in Amsterdam and presented various least-squares

He vited certain

1 Oshorne, N. 8., Btimsen, H. F., and Ginnings, D. C., J. Research Nat. Bur. Standards, 38, 107 (19392
! Lewis, B., nm:l von Elbe, G., Combustion, Flames and Explosions of Guses, p. 382, Cambridge, at

the Universily Press, 1938,
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equations to represent them. The data and one of the e

quations for all pairs equally
weighted follow:

ra “ v

i ) v Lot
16.0215 19.1606 0.99274
23.7620 23,9734 99122
28,4068 28,7894 08983
33,1101 33.4951 98851
37.9525 38,4409 08730 i
42.7435 43.3413 98621 QO
47.4376 48.1401 08541 A
52,2160 53.0328 98460 LD

10° In -~ = (—45.3236 « 0.352) (@ - 1) + 0.29885 (”—“ —;1‘){

Pathy L v N ’

4L
This equation may be checked rather closely without undue Ial)’é};\hy (1) plotting

Inim— =f (t—n - 1) ; (2) obtaining, with the aid of the Ph¥ysical slopes of the
Povg v PAY,
] [ Vpr (fm .
curve at appropriate poinds, values of ln 2 and thegy ~o}x\ln s / ( - — 1) for neigh-
: Poto AN/ botgi v

boring equally spaced values of (v—0 - 1) 85 18.103,22.95, 27.80, ete., and (3) applying
¥ N\

to such pairs of values the ruethod which mkﬁ}a uss of the tables hy Cox and Matu-
schak. What change of weights is involved? Rt TRl b a B el AN

11. One method of determining theoptical constants of a metal consists in deter-
mining the reflectivities of the polished metal for light polarized respectively in the
plane of incidence, Ry, and perpéfidicular to that plane, B|. One of the authors !
has done this for tungsten an‘t\bd:}ﬂé,ined the following tabulated values.

Angle 6f >
Ingidcnée R” RJ.
N 82.5% 12.30%
e &t 83.0 . 11.60
Q““ 78 §4.0 11.05
79 81.5 11.15
AN 20 85.6 11.60
a\"4 81 86.6 12.40
N/ 82 87.9 14.40

On the basis of Chauvenet’s criterion two B 11 values have been discardgd. The a.n_gle
of principal incidence is the angle for which the ratio Ry /&y is s maximure.  Using
leaﬂt’SqUal‘CS procedure and the sbove data, determine the angle of principal nci-
dense, ulso the angle of principal azimuth  which is defined by

Ry
tanfy = —
oy Ry
for the angle of principal incidence,

" Worthing, A. G, . Opsical Se. Am., 18, 647 (1926),
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CHAPTER XIT
CORRELATION

1. Introduction. In the discussions of Chapter XTI leading 40\ least-
squares expressions for y = f (x), we tacitly assumed that, fonearh given
value of z, there corresponded a single definite valute,éE\y\. In the
language of the section about to be developed, we assuxjr{e a corrclation
of unity. We now consider cases where y Is, in additien, » function of
other variables which may not be known. In grticular we wish to
determine within what range of certainty a niathematical rclation, de-
veloped to express the interdependency oktwo variables, may be ac-
cepted for yielding definite values for one/yariable when values for the
other are given. \ \

Generally we speak of eorrelation? between factors, or aceomplish-
ments, or attributes, or characﬁéﬁstics whose dependencies on one an-
other are only partial, %gost:lygt_cn perhaps, we think not- so much of
the physical depengencé of?ﬁfeslcar {#Bies on each other as of their
dependence on certaindgther attributes which may only be swmised.
It thus has meaning)to speak of corrclations (@) between students’
grades in mathematics and in physies (Table I and Fig. 1}, (1) hetwecn
the daily tempémtures at moon at Pittsburgh and the corresponding
temperatufesor succeeding days at New York, (¢) between the heights
of fathg:;ég‘ﬁnd the heights of their sons, {d) between the average rainfall
in a e’gl\dﬁ during some one month as June, say, and the average corre-
sp(mﬁmg temperature, (¢) between the stellar magnitudes of stars and

, .{hé‘ir proper motions, ete.
\J Tt is evident from Fig. 1 that physics and pre-math test grades are

somchow related, since on the average, students with high math grades
made higher physics grades than the students with low math grades.
However, the scattering of the points about the least-squares line whieh
has been drawn is very great and cannot be ascribed to random crrors.
In cases like this the variables are said to be stochastically related of
vorrelated, rather than causally or functionally related as in Chapter
XI. Stochastic relationships may be nonlinear as well as lincar and may
exish among three or even more variables.

In this chapter we treat first the case of two wvariables agsumed
linearly related. The correlation coefficient, 7, is derived and its signifi-

270
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TABLE I
Orapps 1N PBRGINNING MATHEMATICS AND PaYsics ar THE UNIVERSITY
or Prrrseurer OBTAINED RY 4 GRour oF 69 StuDENTS
[The mathemalics conrse preseded the physies course]
— ! -
Pre-Muth | Thysics Pre-Math | Physies
No. Grades, Grades, No. Grades, | Grades,
X Y X Y
1 58 112 36 78 164 SO\
2 59 141 37 79 184 o\
3 63 113 38 97 215 W
4 5% 161 39 83 204 ™4
5 50 134 40 96 Lda> -
6 81 188 41 TR PN |71
7 a5 120 42 83 v 129
8 78 143 43 8A >} 167
9 76 200 44 0 200
10 &0 232 45 b 158
11 a1 157 46 (Y 66 200
12 74 143 47\ ] 86 A7
13 47 113 L8y 69 1;2
14 { 202 ool : 17
P gg 174 :;y‘%{ay.dbraul hrary.orgiR
16 71 1478 51 97 181
17 71 ﬁg\\ 52 82 122
18 78 ¢ 63 64 1
19 73N, g 54 72 72
20 50, () 150 55 69 134
21 82\ 197 56 52 101
22 PR 163 57 73 156
23 08 183 58 87 174
24 Qc' 55 126 59 59 194
255N\° 72 20 60 52 127
260 94 206 61 7l 169
~C7 87 177 62 a3 199
) 28 86 203 63 70 129
29 62 129 64 88 181
30 82 209 65 76 159
31 84 251 66 85 160
32 92 225 67 82 202
33 72 104 || 68 82 169
34 67 154 69 72 189
35 77 148
. _ o
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Fic. 1. Diagram showing a correlation between the mathematies and the physit
grades oblained by a group of students. See Table I
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cance, limitations, and uses discussed. For the case of two variables
nonlincarly related, we define and discuss the correlation index, p. The
coefficient of multiple correlation is then defined for the case where the
dependent variable is correlated lincarly with two or more independent
variables.  Finally, we define the coefficient of partial correlation to
deseribe the correlation (linear) between two variables when a third is
held constant.,

2. The Correlation Coefficient, r. When variables X and ¥ are cor-
related rather than functionally related, we should no longer speak of,
g “best” ¥-value to correspond to each X-value buf only of a most
probable Y-value about which observed values may be distribted
aceording to some frequeney distribution law.  Obvicusly, the™gloser
the observed values are to the most probable value, the morg definite
is the relationship between ¥ and X. This postulate is :Llfle basis for
the various numerical measures of the degree of correlg,tfaﬁ.

On the least-squares assumption that the observediset of data is the
most probable set, the most probable Y-value for.a given X-value is
that given by the least-squares equation. Fo;j(hie Tinearly related case
with one variable only Hable to error, the eguation was derived in Chap-
ter XI. With the origin moved to the gqiht ‘rcpresented by the means
X7, ie., with change of variables tovxf.?:-" (X -X)yandy = (¥ - ),
the cquation reduces, for the conditmwggpml@glg}%ﬁtgg%ss through
the new origin (Eq. 35a of Chapter XI), to o

S5
= | = = 1

& (2;{:2) x=br [1]

As a measure of the“dispersion of the observed y-values about the

lenst-squares 1in,;\;"&.\quantity 8, called the standard error of estimate
is introduced. ~Défined by

§ S, = A E(L%ﬁ 2]

4 .\’~ 3
it 't\;;hé square root of the mean of squared deviations, not from an
average but from values predicted by the least-squares line.
The actual correlation coefficient, r, is defined by

f:\/@ i

Y

It is & numeric independent of the units of the variables c(?rrtlalated.
As heretofore, the o of Jiq. 3 denotes a standard deviation from a
mean. Buf there is this difference: the mean as used here iz merely an
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average, while heretofore it has been additionally a best value for
some measured quantity. The guantity, 7%, is often ecalled the
coefficient of determination, and the quanfity (8o, the coefficient
of alicnation.

3, Limiting Values for r. Using Iiq. 3, we can rcadily evaluate the
limiting values which r may assume. Since (8,/0,)? cannot be negative,
the maximum value of r is 1, corresponding to S, =0; le, to
Sy — yo)? = 0. Thus, the maximum value of » oecurs when all the
observed points lie on the least-squares line (Fig. 24). The n{injmum
value of r is zero, corresponding Lo (8,/ap)" =1, or 8§, = Iy For 8,

O\
Y Y Y—ao
/ ole “~(~ )
ooliso 27
_ ,_ 08 [% A Qs
Y Y Doooc D%%o VU Y
s
a2 )
D
0 L 0 il 0 |
o X X 0 OB X 0 X X
(4) o\ L (B) ()

Fic. 2. Tllustrating the distribu‘gkﬁ:g' df" observed points about: the least-squares line
for the exivome cveadMbrary bitg ) r = 0; (O) r = —1.

to equal oy, it is n(::cggsary that y. = 0 and that the least-squares line
shall be Parallel 16 ‘the X-axis and intersect the Y-axis at ¥ (Fig. 2B).
From Eg. 1 iPig seen that y, = 0 when Zay = 0, a relation which was

recognized, ity the discussion of the propagation of precision indexes n
Chapter, (3¢ as the condition for complete independenec of variables
z andoy, 1.\l’hus, the value » = 0 corresponds to complete lack of correla-
tio\n%“A negative corrclation coefficicnt indicates that the assumed
ddpendency is opposite to what has been supposcd. It is, in effect, 3

L (“positive coefficient for a reversed relation (Fig. 2C).

O

4. Correlation and Frequency Distribution. Though not gvident
from the foregoing, it is possible to show that the correlation coefficient
r is definitely connected with the normal frequency distribution of
measurcments.! Similar to the distribution law for measurements of o
single quantity (Chap. VI), namely

1

h_ e—h'z'zs dr = P
'\/1’1’ '\/%0’1

1 Whittaker, E. T., and Robinson, (., The Calculus of Observations, Londot
Blackie & Son, Ltd., 1926,

J@)ydz = —{20 ] [4]
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it may be shown for the frequency distribution of pairs of measurements
of separate gquantities that

{lz,y) e dy

1 T S P ) 1. . 2
- - P (L[5 ez )=~ (2r'zy iozoyd + @b o) B (1—+') dr d'y (5]
21703;0‘”\/1 -7

Tn this latter expression, the r’ represents an interdependence factor for
the x and g variables. If z and y are independent of each other, ic.,
if eqmla 0, the sign of the zy term will be as often positive as negative
and will disappear from the cxpression for probability of occurrence, m\
the dz oy range. The expression then becomes £\

g W

e (/2] (2 e ) 4 (12 ey ) dx;dy [()]

[fie,y) de dyle-o =

2r o, 0y =
the well-reeognized expression for the probability of Einpultaneous oceur-
rence of & randomly chosen pair of - and y-valugs"when those values
are unrelated, or, as we often say, of two umelataed phenompna If, on
the other hand, the relation between z and y i# definite, 1.e., if ' equals

unity, we ha\rc
[f(x,-y) dr d%{;lbwldbl -aulibrary org.in [7]

This likewise is the expocted valaé for the probability of a simultaneous
oecurrcnce of an z- and a y-¥alue chosen at random when the relation
between « and y is dehn}tb The interdependence factor »' may be
shown to be identical mth the correlation coefficient 7.

5. Pearson’s Product’ Moment Formula. TFq. 3 is generally not the
most convenient fovm for calculating the r for a particular set of data.
To ohtuin such@)form, we first replace y. of Eq. 2 by its equivalent as
given in Eg‘fl}obtammg

1 [ T i (Exy)2] Gt g

O
NN 2 .
V% =5 22 2z nZz’

Then, by the climination of Sy from Eq. 3, we have

\j&;ﬁ ~ 82 @y Zwy [9]
= -3 = ExZEyZ OOy

Ty

Tq. 9 is known as Pearson’s product moment formula. It is much more
convenient than Bq. 3 for caleulating r.
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Cioing farther, we may usc the short-method cheek equations for o,
oy, ete. (Chap. VII, Eq. 13), to express r in terms of the original vari-
ables X and ¥. Then Eq. 9 becomes

XY — 2XY
= = —
V(EX? — nXHEY? — a7

i e [10]
VREXT — @XMV - (7))

Despite its formidable look, Eq. 10 is probably the most adnvenient
form for caleulating . Especially is this true if a computing machine
is available. Applying Eq. 10 to the 69 pairs of X- smdl ¥-values of
Table 1, we obtain g o

sl

TXY = 884,280 ' N\ 3 [11]
X =757 O [12]
Y = 1653 .00 [13]
TX? = 06727 (4]
N 5.:1:,9%35,220 [15]
= 0,62 [16]

www_dbr:a:t’{]ibl'ary.org.in

Since in Eq. 9 and thercefore also fundamentally in Fq. 10 only devi-
ations from the meang®f the quantities being correlated enter to deter-
mine both the numerator and the denominator, the choice of zeros for
the X and Y readings of Eq. 10 is arbitrary. To illustrate, in the corre-
lating of the heights X of individuals with their weights ¥, it suffices
in applying' F4. 10 to use only heights in excess of some conven-
ient valgc} ‘such as 5 ft 8 in., and weights in excess of some con-
venight-weight value, such as 160 Ib. Further, since X and ¥ appear
ra,ié'@d to the same powers in both the numerator and the denominator
" o0 Fq. 10, the units in which X and Y arc expressed are also arbitrary.

VI for any reason computations are made more convenient thereby, in
a problem like that just discussed, one might use the 14 in. as the unit
of height and 2 1b as the unit of weight. Just how advantagcous these
considerations are will appear in connection with the next soction.

6. Correlation Coefficients for Grouped Data. When the pumber of
pairs of items to be correlated is large, the caleulation of » by the stand-
ard procedure may be time-consuming. In such cases it is desirable to
shorten the process by grouping the item pairs as is done in a correlation
table. Table IT illustrates how this may be done for the mathematics
physics grades of Table I. Note that for the mathematics grades 6



CORRELATION COEFFICIENTS TOR GROUPED DATA

Ax Tis

TABLE II

277
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ranges have heen sclected with midpoints at 50, 60, - - - 100, and that
for the physics grades 10 ranges have been selected with midpoints af
80, 100, 120,--- 260. In accord with the grouping principle, the pair
of grades 57 for mathematics and 112 for physies is found in the cell,
ag it is called, which is at the intersection of the 55-65 column and the
110-130 row. Al of the pairs of grades that fall within the limits pre-
scribed for this cell arc to be treated in the eomputation that follows
as though the mathematics and physics grades were respectively 60 and
120. Table 1T shows that there arc 6 pairs of grades to be 2o treated.
For the ranges chosen in Table 11, there is & dilliculty arisilg when,
for instance, the mathematics grade is just 65. Different procedures
are then possible. The grade may be recorded with halfweight in both
the 55-65 and the 65-75 columns. Instead, it maybe recorded with
full weight in the 55-65 or lower column, with theumderstanding that,
with the next similar oceurrence, the grade will\bé recorded with full
weight in the next higher column, Of coursg other rules may be set up
in order that the effccts of several such pased shall be negligible as to
the combined results of the parficular choites of assignment.

As for the standard procedure described above, Eq. 10 fs basic for
the computations contained in a gorfclation table. Note that, taking
advantage of the feature pointed out above, regarding the arbitrariness
of the zeros and thewmnitsiehduRssargneertinthe rather large and cumber-
some numbers used in expresging X and Y in Table IT have been replaced
by the convenicnt small humbers of X’ and ¥”. Values for X", ¥, their
frequencies f, fX',¢ g’;fX 2 and f¥'? are shown in appropriatcly headed
rows and columns. MValues for FX'Y’, however, are to be found only in
the lower rightshand corners of the cells,

Ag might{ bg expected, the grouped-data method with ifs approxima-
tions 3'iel'gi,°5\for the data of Table I a result for r, namely 0.01, which I8
differentfrom that obtained when the more precise methixl oullined
abo’}fe is used, namely 0.62. The difference, however, is guite insignifi-

" cant, as will appear in the later discussion of the physical significanee.
<« )of the r that was found.

7. Physical Interpretation of a Correlation Coefficient. In general
the value of the correlation coefficient provides the answer to the ques-
tion: To what extent is ¥ dependent on X, judging from the particular
tested sample from the infinite parent group of data? Two other ques:
tions are usually of cqual importanee: (1) How is the value obtained
for r to be interpreted? (2) To what extent does the r obtained for
the sample apply to the parcnt group? Thus, for the sample of data
contained in Table T, the value 0.62 was obtained for . The guestiol
of the reliability of this value must await the discussion of the following
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section. [t is now desirable to consider the interpretation of 0.62 as a
dependency indicator. There arc two procedures.

The first interpretation procedure involves giving attention to the
corresponding Sy/e,, the quantity whose squarc has been referred to
ahove as tho coefficient of alienation. As indicated above, it is the
ratio (Fig. 1) of the standard y-deviation of the plotted points from the

1.0
M|
. ""\‘_
8 ,\:\'
N
b < N
N
€ <
S?f o
U'!J' ~\\\.: \\

ST
/

Aa}’;fw_dhraulibrary.org.in
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N\

3

€
1.0
0 .2 \\ ) ’ .5 3

¢

Fia. 3, ‘Shimx:ing Syioy = f{r} in aceord with Eq. 17,
N4
4 ”,’ . . . . 01‘,
line rt:prcsunt-ingf;t}le loast-squares equation with ¢ only liable {;0 er{‘ o
to the standive deviation of the same points from the y:f—mezn.x fue
higher the\cerrclation, ie., the greater the dependency of ¥ :

smallepis'S,/o,. Rearrangement of Eq. 3 yiclds
~ pr (5= [17]

Ty

. i i ig. 3).
whose Tocus on a plot, showing Sy/ay = f (T?’ s a (ﬁm]? {f;gof 3‘ for the
The value of S,/0,, corresponding to 0.62 for the ‘3‘ ta, given by

data of Table 1, is 0.78. The value of o, for the same aaia, g1

PP (18]
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is 38.0. 8,is 20.6, Correspondingly, p, (= 0.6750,) and P, (= 0.6758,)
are 25.6 and 20.0.

Referring to Fig. 1, note that lines 4 and B are drawn parallel to
the X- and Y-axes and indieate respectively the mean mathematics and
the mean physies grades as shown by Egs. 12 and 13. Lines C and D
eorrcsponding to

Y=Y 4 p, = 1653 &= 25.6 [19]

enclose between themsclves one half of the plotted points.  Line E is
the locus of the least-squares cquation computed according.td™Eq, 1.
Its equation is N

Y=Y, = 1653 + L8B(X — 75.7) D [20]

Lines F and ¢ correspond to A

Y = ¥, Py = 1653 2 20.0 + 1.843(0— 75.7) [21]
Like lines ¢ and D, lines FF and ¢ include bétdien themselves one-half
of the plotted points, The vertical sepa{rsitibn of the latter two lines
is less, however, than that of the first_tafo,*the ratio being that of S,/e,
or, what is the same, of P,/p,. AV :
We may now interpret the significince of an r of 0.62 or of an S,/sy
of 0.78 as applied to the data Jéﬁ’ Yable I. Given that a student has 2
grade of 90 in mathepationmdifibeas,we gay of his probable performance
in physics? Ignoring the.cortelation between mathematics and physies,
our best estimate of Lig prade is 165.3 and the chance is 50} that the
grade will lie between.139.7 and 190.9, i.e., in the range 165.3 & 25.6.
However, knowledge of the correlation between mathematies and physics
grades, found frem Table I, enables us to make a prediction in which
we have cgn%iﬁcrably more confidence. From Fig. 1 we see that about
196 is tl;;{n})st probable physics grade for the student whose math grade
is 90, and further, the ehance is 509, that his grade will lie between 176
a-nd’:,?l(j, Lo, in the range 196 & 20.0. The range for the predicted
. even chance, namely 2P, computed on the correlation basis is only
3 §0.7§ Uf. t}‘1e corresponding range, namely 2p,, that results in case corre-
lation is ignored,

In view of the foregoing one wonders why the ratio 8,/c, was nob
chosen in place of r to represent eorrelation. One evident answer i
that with increased correlation there is a decreased value for Sy/oy

In connection with the foregoing interpretation, no indication has
been given of the reliability of the computed r, Sy/0y, Dy, and Py These
features will be discussed in the next section.

A second interpretation of 7 treats it as & measure of cornmon causes.
If X i a lincar function of ¢ + & independent variables which contribute
equally to its values and Y is a similar linear function of 7 + & inde-
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pendent variables, where & is the number of variables common to both
X and Y, it may be shown that
k

TV GIRG 1B (22]

On this basis, it would seem that a correlation of 629 for mathematics-
physies grades would indicate that about 629 of the characteristics or
aetivities required for the two subjeets are common characteristics.
While 1his interpretation can doubtless be tested quantitatively in some
instances, just how it can be so tested in the case Just mentioned s not
apparvent. Incidentally one would find it very difficult to so interpret
a correfation coefficicnt of 0.95 relating the annual nunber of marriﬁ:gss
in the Church of England and the standard mortality rate for the)years
1866 to 1911.

Tt shou!d be remembered that 7 is caleulated on the asstiaptions that
the values of ¥ and X are distributed normally and t-hat-';bn\ the average,
Y is directly (or inversely) proportional to X. Any Mgnificance which
r may have decreages as the distribution of ¥ qx\\X departs from nor-
mality, and as the average relationship betwgen, Y and X becomes non-
linear. With marked departures from normality or lincarity, r loses all
significance, and other measures of theydegree of correlation should be
used. N
8. The Reliability of Computed @orrelition Koeffigientsin Question 2,
asked at the beginning of the preceding section, is of interest here.
If 7 were a variable whose m}dations for = number of samples from the
same parent universe wefe to follow the normal distribution law, the
answer to the questioh, would be simple. If would then be sufficient
to calculate the pre€i@aon indexes of r and interpret them in accord with
the discussion of, Chapters VI and VII.

For small andémoderate values of » the equation

O 1—r _1-1
AN T V-1  Vn

wl}eré‘ # is the number of X,Y pairs in the sample, seems to hold rather
well. Tt fails, bowever, for small values of n and for values of r near
the limits of its range of distribution, ie, ncar 1 or —1. In these
regions the distribution of 7 is particularly skewed (Fig. 4). ]

To simplify computation for such skew distributions, Figher ! intro-

duced the function

1
L7 _ ) 1500 [24]
1—7r I —r

¢rs, Chap- VI, Tth Ed.

it

z=73In

i Pisher, R. A., Statistical Methods for Research Work
Oliver & Boyd, Edinburgh, 1938.
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Tts distribution is nearly normal regardless of the true value of » (see
Table V, Appendix 2} and is subject to certain normal distribution
procedurcs.
The standard deviation of 2, ¢,, and its probable crrov, p,, are found
to be
1

g, = \7n _—3 [25]

and
1 "
= 0.675 —=-— O [26)
: V-3 )
A\
where » is the number of pairs of values used in obt.ainir;g\r\fw z, Using
Eqgs. 24 to 26, it is easy to caleulate whether 2, and Inee also 7, i

N

?*7 7
¥
a \

O N

*

Sarwdwr.d bvéijh bwé
" i:“}\//
,_____._...-—-' )

..4\ / 6 8 1,0
x'\.. Gorrelation Coafficient, v

Relative Frequency of Occurrence Per Unit Tnterval of »

Fic. 4\?pected distribution for computed valuss of r, obtained from samples of

10 guirs of X,¥ valucg chosen at random from an infinite parent nniverse whose
ES 19; 0.80.

g

“\significantly different from zero. Further, by the rule of propagation of

precision indexes for related quantities, the standard deviation and the
probable error of the differcnce of two values of z are

Olzp—z) = \/0332 -+ rrz12 — 2ro,0., [27]
and
Plog—epy = \/;zf + 927 — 2rp.,p., [28]

It is accordingly relatively simple to caleulate whether or not two values
of z, &m:l hence of r, are significantly differcnt from each other. For
translation to 7, Table V of Appendix 2 is again helpful.
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Ntustrating the foregoing, eonsider the 69-pair sample of Table I, for
which a correlation cocflicient of 0.62 was obtained. Using Egs. 24 to
26, we obtain in sueeession

2 =0.725 [29]
oy = 0.123 [30]
ps = 0.083 [31]

With the aid of the table showing + = f(z) referred to or by means of
Eq. 24 directly, one finds that the limiting values of r corresponding.to™\
various assumed deviations in z involving ¢, and p, are those shown
in Table IT. Inspection shows that the limits of uncertainty of # ‘with

. PR

Ny

TABLE II ~\

TawITIxg VALTES of THE CoRRELATION COEFFICIENT 7, CoMPTTED' 430.62, AND OF
8,7y vor THE Darsa or Tasie I To CornEsroND TO AssoyEps DEviaTIONS OF
oz, Qs 2.580, AND p, (BEqe. 25 anp 26) ¥ z (CoMPUTED 4% 0.725, tsing Eg. 24)

a
7 N\

' $
Limits for 2 Limits for # Limits for Sy/sy
!

Deviation in 2 N
Upper { Lower | Upper Lower | Upper Lower

o 0.123 0.83 0.40 ME{A?\Q?&%I'&U“QT§%}T. el 2 0.84
0.45° | %0

20, 0,246 0.97 0.48" 0.75 .66 0.90

2.58:, 0.316 1.04 041 0.78 0.39 0.62 0.92

p, 0.083 0.81 | r86d 0.67 0.56 0.74 0.82
&

change in assumed uficertainty in z vary more for the lower limit of r
than for the highetlimit in the case of a positive value for ». From the
standpoint of probable errors, it is found equally probable that, for
other samp {Similar to that of Table I, the new succeeding values of
r will lie 'as\fre(lllentlyf without s within the range 0.56 < r < 0.67.
For Sy;’io‘g’;the range is 0.74 < Sy/e, < 0.82. From the standp_o_int (_)f
th¢'Thany who attach importance to the 2.58¢, or 99% probability, it
I8 §tsry unlikely that any random sample from the parent universe of
Table T will yield an r outside the range 0.39 <7 < 0.78 or an 8y/0,
outside the range 0.62 < 8y/¢y < 0.92.

Still referring to the math-physics grades of Table I, we may pext
answer question 2 above, namely, “To what extent does the r obtained
for the sample apply to the parent group?”, by the following statemer'lts‘
If there were no corrclation between math and physics grades, ie.,
= 0 for the parent group, the probability of pbtaining the value {].E'SZ
or higher for r, or what is the same, 0.725 or higher for z (Eq. 29), ip
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a sample of 69 pairs of grades would be less than 0,0001. This is the
probability of a deviation from the assumed zero value for z, whose value
in terms of the obscrved ¢, is at least 0.725/0.123, i.c., 5.9¢.. Hence,
we may conclude that there is a decided correlation between the two
grades. Further, on the basis of the 0047, probability test [or significance
we may conclude that the value of r for the parent group from which
the data of Table I are a sample lies between 0.39 and 0.75.

9. Regression Lines. The least-squares line, Eq. 1, expressing the
average relstionship between Y and X, or between y and xpqn the
assumption that ¥ or y only is liable to error, is called t) 1 rugre S8I0n
linc of % on z. This name originated with Galton, whogi funf applied
the theory of correlation to biological data. C,011&1(19r1r1g‘11<J\\ 1 popu-
lation could remain in dynamic equilibrium if the .oh‘almnw inherited
the characteristics of the parents, Galton foundi?ah a study of the
heights of fathers and sons, that the sons devmterl\f[ ‘o the mean height
less than the fathers; i.e., the sons regressedJdaw ards the mean. Thus,
he called the line re]atmg the heights of” sbns and fathers the line of
regression. .‘\

Generally, two regression lines ca’ U caleulated for the case of two
correlated variables; (1) the regressmn line of  on x --the least-squarcs
line obtained on the as&umptlon that z-values arc cxact, and (2) the
regression line of z oWy dhadelbraxiarasitine obtained on the assamp-
tion that y-values are e;gacﬂ "(Fig. 5)." The equation of the regression
line of ¥ on z as giveiluibbcwc is

\\ yc—[zzzy}x—b [1]

“)
By ana,log_)g~the least-squares line obtained on the assumption that
y-va,lu%:hl‘e exact is

N\ z
= Xe = [ Iy] Y [32}
e ) Ey

N
. S -
\or, when expressed in the more common form

pt 2
Yo = |:_y_] r=bx (33]
Zay
From Eq. 9, it follows that
o IRy " '
= | 2 \/’?f_c . [34]
b Izzyz y.rc b

Thus, the correlution coefficient between y and z is the square root of
the ratio of the slopes of the two regression lines,
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It 18 scen tl.mt r has the same value regardless of whether z or y 3
t_akel} a¢ the independent variable. None of the other mefﬁcienti’lr 135
be discussed possesscs this desirable property. Referring to Gé,lt:}n’?s
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10, A Graphical Method for Comput
Fq. 34 is the ‘basis for an approximate graph
r, "This method consists in (1)

cal

plotting the data (Fig. 5
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the X- and ¥-axcs into & convenient number of equal class intervals;
(3) replacing the points in each X-interval by a weighted mean poing
(the ©’s of Kig. 5) and fitting the best straight line— the regression line
of ¥ on x—to these pcints; (4) replacing the points in eoch Yeinterval
by a weighted mean point {the X’s of Fig. 5) and litting the hest straight
line—the regression line of © on y—to these points; (5) computing the
slopes of the two lines and substituting into Eq. 31 to oltain the de-
sired 7.

For many purposes the results obtained by this more rapid ARProxi-
mate method are sufficiently accurate. The data of TableNl, when
treated graphically as in Fig, 5, yielded 0.62 for ». Thig ‘eXact check
with the value (Eq. 16) computed by the direct applic:’&ﬁun of Eq. 10
is fortuitous. Computed values ranging from 0.59 @65 would have
been considered cqually satisfaetory as checks. 70)

11. Nonlinear Correlation. When the relatidnship between two cor-
related variables is decidedly nonlinear (Fiﬁ.,ﬁ), the eorrelation coeffi-
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Tra. 6. Anexampie of nonlinear correlation hydrogen evolution test values plotted
as o funetion of tin coating weights for het dipped tin plate. Note that if the
hydrogen evolulion test value iz taken us independent, the resultant regressioll

curve would have » grealer ourvature than has the plotted curve. (Cowilesy o
Mr. G, €. Jenison.)
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cient 7 loses ils significance and indicates a lower degree of correlation
than actaally exists. In such cases the index of correlation, p, is eon-
sidered by some to be more reliable. It is defined by the equation

v 2
_ S

Ty

[35]

L]

P=Ajl

The «pantities represented by S, and ¢, are analogous to those of Eq. 3
defining #; the enly difference is that now 8,7 is the mean of the squares
of deviations of chserved points from a least-squares curve (the regres. \
sion curve) rather than from a least-squares line. The index of corve
lation differs from the corrclation coefficient in two important resﬁe:fts.
The first difference lies in the fact that for a given set of = and\y values
there is only a single value for 7, but many valucs for p, a different value
for esch type of equation that may be used to representtthe relation
botween y and x. Thus, a value of p has little orhd\peaning unless
ihe form of the least-squares squation fitted to the d\ata is also reported.
The second difference between p and r ariscs from‘the fact that the value
of  for a set of z- and y-values docs not dggend on which variable is
assumed dependent and which independent,while the reverse is true
for p. Consequently, it is customary ttadd a subscript to o, e.g., oy,
to indicate which variable is assumed .t}egendcr;t or subject to error.

Considering the uncertainties odfMette TRy S & Bretation of
any measure of correlation, it igdoubtful that much is gained by caleu-
laling p instead of r unless j;h'ékurvature of the regression curve is very
marked, X\ ;

12. Multiple Correlation. We may sometimes consider a variable Xy
to be dependent on {6 or more independent variables, Xz, Xa- -, and
desive to know the-correlation between X; and Xs, X3--+ For this
purpose, a ¢ {fipient of multiple correlation may be caleulated. It is
usually sufﬁéﬁri"r. to congider X a linear function of X4, X3+ Then
the cooffieiehtof multiple correlation between X3, and Xa, X5+, uﬁu‘a.lly
desi :u?d by the symbol Bygs., 18 the same as the simple coefficient
of cmlatiol; butwe.én observed values of X, and corresponding values

obtained {rom the least-squares equation

X,=a+bXs+ecXs+ [36)

for which the independent variables are X, Xs, etc. Tt is seen from
Fig, 7 that for two independent variables, the coefficient of mult-lgpl.e
correlation is analogous to r and to p except that the value of S, 1
now determined by the deviations of observed points from & least-squares
plane rather than from & least-squares line or curve.
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Fie. 7. IDustrating multiple correlation for the gdse w"hcre X1 is viewed as dependent
on Xp and X5 The short straight lincs atfucked to the plotted ohserved points
represent, on the assumption that X; oflye liable to error, deviations of the ob-
served X1 from the plane of regression 0f7X1 on XoX.

13. Partial Corre;a,;ip;a.b‘.g}hérgi@mpgqgrrelation coefficient between
variables X, and X, indiciies from one point of view, expressed above,
the percentage of factghs common in the determination of Xy and Xp.
I one such factor idthe value of a third variable, Xy, it is sometimes
desirable to dctglgune the coefficient of partial correlation hetween X
and Xs;i.e., thetoeflicient of corrclation between the values of X and
Xo after ’thta.\cﬂf_ect-s of X; on each has been deducted. Given a set of
(1.0rrcqun;}ihg values of X, X,, and X5, the cacfficient of pariial corre-
latioh between X; and X, with the effect of X, removed— symb(ﬂized
by\rz.3—is obtained by calculating first the lcast-squares line relating

N <Xy and X,
\ %

Xie = a1 + bizX3 [37]

then the least-squares line relating X5 and Xj
Xge = a2 + b3 X3 [38]

and finally the simple correlation coefficient between the differences
(X1 — Xye) and (X — Xg,). :

The effect of any number of other variables—X3, X4, X, etc.—may
be simultaneously removed from the values of X; and X5 in a similaf
manner and the partial correlation cocfficient ry; g45,.. obtained.
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Caleulations are usually simplified by use of the determinant £ de-
fined by

1 iz Tz -+ T
e 1 rey oo T

R = : [39]
TRl Tre Taz e+ 1

where ryz (= 7g1) is the simple correlation coefficient between X fmd
Xy, cte. Tt may be shown that 2 A\
, Byg O [ 0]
12348 T R
'\/RnRgg <N

where Ry represents the cofactor or the minor of r1p inﬁhc‘ determinant
R, ete, ’

14. Summary. Where y is a function of z and’of other unknown
variables, it is sometimes desirable to express‘the dependency of y on
z to the extent possible. For this purpose the correlation coefficient,
r, has been developed for cases where thé relation s assumed linear and
the index of correlation, p, for casmsjiwﬁem the relation is nonlinear,
The corrclation cocflicient is deﬁlfluﬁﬁ\b@'.dbraulibl'ary.org.in

P4 Y1
P — (‘éﬁ’) 3]
N §

where oy, is the standardl deviation for the given distribution of values
for the dependentvgriable and Sy, called the standard error of estimate,
is a similar stan@ard deviation for deviations from the least-squares line
with the dependent variable y only liable to error, which best represents
the pl()tt(rd%,ta. With the origin of coordinates shifted to the means
of the, X}slaand the ¥7s, the least-squares equation for the best line is

/

O e P (1]

P

and the expression for S, is given by

_ }2(?} - ?J’c)2

+1. A negative correlation coeffl-

The limiting values for r arc 0 and ;
for a supposed reversed relation,

cient is in effect a positive coefficient
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Correlation coefficients may be shown te be connected with {requency
distributions,
The most convenient formulas for computing r are

Zxy
= N2y ]
and
nZXY — ZXZTY
[16]

r \/[nZJ-Xz — (EX)*]nZY? — (ZY)7] ~
of which 2 and y differ from X and ¥ only in that the valuesor z and y
arc measured from the means of X and ¥ as origin while\“and Y are
moasured from the physical origin associated with theix dfinal measure-
ments. ~“ R

There are two ways of intcrpreting a correlatidn coefficient.  The
first consists in determining first the ratio Syiay and then noting that,
by means of it, predicted values for ¥ to gorkespond to given values of
X obtained with correlation procedurc‘)'-\ixli«de\riate on the average from
actual ocewrring valies less than when correlation factors are ignored.
The fractional amount less is py@cﬁsély the ratio S,/o,. The second
mcthod of interpreting v relategdtito a funetion of the conimon factors,
k, and noncommon-fasioasudutitsbandotgmining the magnitudes of the
two variables being corrglated. Thus

e } k

i\ p = S — [22]
%) N

Because e distribution of r-values is skewed, even when the distri-
butions o{&t&ie variables correlated are normal, procedwues [or deter-
miningPrécision indexes of an individual correlation coefficient are dif-
fereitfrom the normal procedure.

. ,\~f In the text the foregoing has been applied in some detail to the corre-
&\ lation of physics and mathematics grades obtained by a group of 09

" students.
Two regression lines are distinguished. One is that of y on z. 1t i

the least-squares line
Zay |
Yo =[z— v =bo :

The other is that of # on y. Tt is the least-squares line

2y
o = [_EL = bn (33]
2y |
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Combined with Eq. 9, these cquations lead to

N =T
zx‘zzyz b [34]
Tq. 31 shows that, when linear correlation between two variables is
sought, it 15 immaterial which variable is assumed to be the independent
variable, Further, Eq. 34 serves as the basis for an abbreviated graph-
ical method of determining correlation coefficients which is described
fully in the text. y
An index of correlation p defined by X
A
B Syz ;‘\ "
p 1 o2 \ « [35]
has heen developed for nonlinear cases. Here S,° refers %0 deviations
from a least-squares eurve rather than from a straighfline. In specify-
ing valucs for p, the type of least-squares equation assumed and the
variwble assumed dependent must be stated. "';,\ ’
Multiple eorrelation coefficients bave beep'ﬁ}veloped for cases where
the dependent variable is viewed as a funetion of several independent

variables. oM
Pariial correlation coefficients ha&;é;f;c%n developed for two variables
174 T

for cazes where the effects of otherdelnted A o LY < Bddh eliminated.

A\
.{) PROBLEMS
N\

1. The proper motion gha star is its apparent angular velocity ahout the sun a3
seen against the backgrotmd of the celestial sphere. Tt is ordinaril}.r expressed in
seeonds of are per yeah, *The parallax of a star is one-half the angle which the earth’s
arbit subtends at fRestar. 1t is ordinarily measured in geconds of arc, The greater
a stur’s distande Bhe loss is its parallax. A certain correlation i3 to b(? e.xpected
between t.hns’e§\§o commonly messured quantities. For certain reasons 1t 1s m.uch
more conveﬁient to find such a correlation for the logarithms of the proper motions
and {hg jﬁg(r’allaxcs rather than for the guaptities directly. Using the values for proper
m ign,. ¥nd paraliax given by Russell, Dugan, and Stewart (As’zmnomy, Vol. 2,‘p. 637,
Cimiv& Company, 1927) for the 22 hrightest: stars, determlr'ie the correlation oo~
efficiend. connceting the logarithms of those ¢uantities. State in words the physical
interpretalion you are able to give to your computed value.

Proper Motion Parallax

Star (seconds/year) {seconds)
o« Canis Majoris (Sirius) 1.315 0.371
o Carinae 0.022 L0056
a Centauri 3.682 758
@ Lyrae (Vega) 0,348 124
e Aurigae {Capella) 0.439 069
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Proper Motion  Parailax
Star {scconds/year}  (seconds)
o Bootis (Areturus} 2287 0.080
g Orionis (Rigel) 0.005 006
o« Canis Minoris (Procyon) 1.242 312
« Fridani (Achenar) 0.093 049
g Centguri 0.089 .01
o Aquilse (Altair} 0.659 204
a Orioniz (Betelgeusc) 0.032 017
a Crocs 0.048 NUE AN
a Tauri (Aldebaran} 0.205 057
g Geminorum {Pollux} 0.623 . 10‘1“
a Virginis {(Spiea) 0.051 014 ’
a Beorpil (Antares) 0.032 4 , 009
o Disces Australis (Fomalhaul)  0.367 \ 3T
o Cygni (Deneb) (].Of)elm'\'\ N
« TLeonis (Regulus} 0.24% ) 058
g Crucis BN S D16
a Geminorum (Castor) \’ ﬁ 201 076

2. In a partieular application, it was d(‘cnled that a saving in time xnd cost would
result if the chemical analysis for COPPEN insteel with a copper content ranging from
0,025 to 0.20%, cowld be replaccd by A" spectrographic method.
application, it was arbitrarily dcmded that the spectrographic and the chernieal

analyses should agree t0 S Whib 6%‘1 0 Tfﬁ"(%ﬁﬁg i

52 samples, the following w;l«um n

of the time.

Ax n criterion of

In a test wsing

o7, for copper f'ontent were oblained.

S
o) i
Chemical Spcetrr_:grﬁ}hi& Chemieal Spcctrogra-phici Chemical [Spectrographic
0.092 ®;10¢ | 0.08 0.097 0.120 0.113
128 | (ya2r 067 .087 .08% -096
080/ } .083 .068 .068 ,088 082
L0868 ) 087 .066 054 126 14
080 078 .103 106 076 074
L8 107 .054 .062 .044 046
“\ 088 .102 .082 .072 .060 064
.105 .108 .096 .101 110 110
.096 .110 .128 .140 100 .095
084 .100 .163 172 103 086
102 . 000 084 073 (110 122
.100 .10t 192 .18 .076 .073
122 2129 .150 .151 .206 .220
.126 .135 148 148 .152 164
102 .099 089 093 142 130
108 104 144 .136 .0%0 .09
.106 107 114 115 .106 .103
.108 .103
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Delermine the correlation coefficient, its probable error, and, on the basis of a norma!l
distribution of measurements and of differences, the correlation coefficient that is
demanded in order that the arbitrary criterion should have been satisfied.

3. Given the data below showing metabolisin rates, M, taken in a more or less
haphazard order, for guines, pigs as a function of the temperature of the surrounding
stmosphere, T, as reported by Herrington* of the John B. Pierce Laboratory of
Hygicne at New Haven, Coon,, determine the correlation coefficient, using Pearsvon 's
pruduet-moment formula.

. Min Min Min

in {'C 'ﬂ ing:"c keal inT:’C _eal
m? day m* day m?® dag \
€ N\
- &
35.3 716 27.9 720 21.1 | 804
34.7 557 27.8 678 21.0 »\ 7 815
34.7 600 27.8 677 20.9. 4 & 898
34.6 885 27.8 739 2007 812
34.6 719 27.7 777 20,3 839
94.3 694 27.6 700 /5020,2 988
33.6 620 27.2 603 4% 200 913
32.8 701 2.8 FEESNS 19.7 968
325 473 926.7 718\ 18.1 991
a2.2 579 26.3 Jre6 17.6 1005
52.0 687 26.1 | WNT725 17.5 935
31.9 676 25.7 ‘m:\i\?w.awauli rarytbiy.in 917
41.4 638 25,4, 752 16.7 999
81.2 Bad 25{3 801 16.4 971
31.2 594 I 7h) 784 16.4 959
30.9 607 et 2 789 16.4 983
30.9 621 N 23.7 787 16.4 993
20.7 536 .10 23.2 794 16.3 1023
30.3 e 22.1 01 15.8 1071
30.3 502 23.1 o7 15.4 1065
2.8 \::\6(51 23.1 835 15.1 1050
20.6 .\ 703 23.0 855 14.0 1057
29,4, 89 593 29.7 799 13.6 1057
20 4" 672 22.7 905 185 1104
2033 628 22.6 804 13.5 1157
241 601 29 6 233 13.3 1085
28 % &70 22.5 810 | 13.3 1047
28.8 605 224 742 13.1 1071
28.5 756 92.2 852
28.2 631 21.6 877
T

_ 4. Determine the equations of the lines of regression and the correlation coeffi-

cients for the data of problem 3, using the graphieal method.

! Herrington, 1. P., 4m. J. Physiclogy, 129, 123 (1940}



CHAPTER XIII
THE ANALYSIS OF NON-HARMONIC PERIODIC FUNCTIONS

1. Introduction. A periodic function, as used here, 13 one ywhich iz
composed in part or in its entivety of a quantity whose magnitude varies
in a regular recurring manner. In some cases the periodigQintiation i
sinusoidal, as for the emf of a dynamo. In other cases the Viriation iz
in accord with some other law, as that for the magnitulle of an eclipsing
binary. Some funetions contain buf one periotﬁtﬁihr and are simple.
An illustration is the displacement of a partiels, Tn siinple harmonic
motion from its position of equilibrium. No AdxtHer comment regarding
such functions iz needed here. Other funetiohs contain more than one
periodicity and are complex. Those belonging to this Intter group ave
further subdivided into fwo types, theharmonie and the non-harmonie.

An illustration of the complex hermonic periodic function is that de-
seribing the motion of a partigle™ef a bowed violin string. Huch func-
tions may be rel)rese‘n,&@ddbyéiﬁiﬁyiéeg;_mgﬁﬁ and are subject to Fourier
analysis (Chap. V). The ffequencies involved are a fundamental and
harmonies with frequencies which are whole-number multiples of that
fundamenial. IHustrations of the non-harmonic periodic function (the
descriptive termy, “éemplex” is not needed here because there are no
simple non-harmenic periodic functions) are (1) the height of a tide at
a given plage\a¥ a function of time, (2) the forced vibrations of a strue-
tural mgu{&}eiﬂ (3) the frequency of occurrence of sunspots, (4) the solar
“"nSt‘?{\ty and (5) the magnitude of a doubly or trebly eclipsing mubti-
comperient star.  The analysis of functions of this type forms the sub-
ject matter of this chapter., Actually the {theory applics as well to

<\pomplex harmonic periodic functions. In fact, where the harmonies
are of rather high orders, i.c., have frequencics many times those of the
fundamental and whero the range given in the data for the independeunt
variable is less than that needed for the complete representation of an
assumed fundamental, the Fourier series method may fuil, leaving meth-
ods like that advanced here as perhaps the only one possible for an
analysis.

Normally there are two parts to the analysis of a nen-harmonie
periodie funetion, (1} the seareh for the periodicities and (2) the deter-
mination of their magnitudes., In somoe cases, e.g., the tides, the perio~

i 204
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dicities, at least most of them, are known with sume precision in advance
because of the known eauses,  The same is true sometimes with regard
to structural vibrations. For these cases, the first step of the normal
procedure s greatly shortened.  For the other cases, for which the
normal procedure is generally rather long drawn out, inspection proe-
ezses will often help in reducing the time required.

Sinee the procedure for a case involving three or more unknown
periodicities is the same as for the case Involving only two and differs
from it esscntially only in being longer, a case involving only two com-
punent periodicitios hag been selected for discussion. Morcover, sined
nothing in generalily is lost and something in completeness is gamed“hy
using a funetion composed of sinusoidal components, the functioh hds
been thus further restricted. Tn what follows, we first discuss theunder-
Iying theory, make a search for the periodicities, and then Aimally deter-
mine their amplitudes, S 4

2. General Theory. Let ' \/

£ ool 27 ' [T :%: 27
z=ftl=a+ta sm(—T;t—l—ﬁ)—}—a ?}F:\(.F£+6 )+

—a4+Z+" 4 Y (1
dezcribe a funetion for which values,.z]é;z ), 73, " - - are given ‘corresponding
{0 various successive instants of {iRe, ﬁl,b Toulibrary@igiRed from one
anotlier by the constant intefwal, 7. If the function chosen is not
sinusoidal, the treatment tha:ﬁ Tollows would still apply unehanged up
to a cortain point. Thatpoint is reached when attention is transferred
from periods, for examiple, to amplitudes and phase lags.

Let the fluctuations in z and the data be such that it is apparent by
imgpeetion thatrwnd of the periods T' is between m'r and (m' + D)7
whete m' isalwlole number. With € representing a positive unknown
fraction ]qs&ﬁan unity, we may write

“
&

o) Pt 4 O &
Alfo et
SQ T = (M’ + ¢r (3]

of which m’ and ¢, similar to m’ and € in meaning, but bc‘oth unknown,
represent the condition so far as the gecond periodicity 13 concerrlmd.
For the present, let m” and m” be incommensurable. If the fluctuations
are such that a value for m’ or m’ is ot apparent, the general plan of

. . s diffe 7l ealr
procedure will remain unchanged. The main difference, as ¥ ill app

later, is in the amount of labor involved. . ' as defined
Vith the data tabulated and an approximate value for »t'; as de
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by Eq. 2 or Eq. 3, obtained by inspection or otherwise, the next step
in the search for the periodicitics consists in arranging the given values
of 2z and certain of their means in the follewing array

2 Z2 Z3 Tt Ewe
Zmt 41 Zm’ 42 Zmt 43 et Zom
Zam/ 41 Zomr2 Pomr43 0t Zgme
N\
N
2 AN
Zhm’ 41 k' 42 Thml 43 k4 1me v
Zrl Zrz Z{S me’

Let Z'y, Z's, Z's,-- - represent the means for the isiltzt:iﬁssi\-'t\. columns.
Next one determines o, the standard deviation A0x the entire group of
z valuos of the array; oz, that for the meand&Y- - - Z’,,; and the ratio
gz:/o,. The value of o, does not depend ondthie details of arrangement
i AN Array. KV

It (k 4+ 1)m’/m”, the number of perads of magnitude 7" involved is
very large, the condition that T/sand 77 differ appreciably and are
ineommensurable will insure th;it»fhe contributions of the z''-term of
Eq. 1 to the various &&iwmﬂkdi&iﬁﬁmpxi\fgaﬁzly equal. Al of the varia-
tions in the means will then be due to the #-term, and the ¢, that has
been computed will be & function solely of that term of Eq. | and the
array A. \‘ )

Consider now th}effect on a oz, due to a variation of e. For the
discussion that-immediately follows, assume that we have at hand the
values of t;lle:i\unction of z of Eq. 1 at all instants desired rather than
at im;tam@;}liﬁering only by 7. We may therefore consider arrays like
that O,Q&aibove with varying +’s and consequently varying ¢'s. Consider
the, ’@:ase of e = 0. It is now evident that, if for one z in a particular

" golimnn the 7periodicity has given its maximum contribution, every
\ pther z in the same column will have received necessarily the same maxi-
mum contribution. The evident result is that the ¢ for that con-
dition will be a maximum. ¥For any slight shift of 7 yielding an e other
than zero, the oz then computed will be smaller. Only when & oz i
known fo be a maximum can we be sure that the corresponding mr
represents a frue period for the function.

Generally data are not available for testing with the gradually varying
7 assumed posgible just above. We must scek the condition for a maxi-
mum oz from valucs for various instants eorresponding to & fixed
In practice this condition of varying r is approximated by an artifice.
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Oecasional appropriate values for z are omitted from the original set,
their places in the array are filled by the items of the original set next
in order, and the series of values thus obtained arc treated in the regular
manner but with the understanding that now the period is equal to
(m ~+ ¢r. How this can be done will be illustrated later, 1t is sufficient
‘to say herc that one may therehy effectively determine various oz's

corresponding to various €'s, to find the e which yields the desired maxi-
mum for ¢z, Strietly, the maximum oz/s,, sometimes called the corre-
lation ratio, is desired, for ¢, will vary slightly with the omissions. In
practice, a maximum for oz often suffices. O

For sinusoidal periodicities only, the values of (sz:/0.), (62/02); and
other similar ratios that may have becn obtained for other periodicities
present may ordinarily be used to determine the relutive aniplitudes of
thesc various components and to determine at any stagé i’ the pro-
cedure whether any remaining periodicity has been left“undiscovered.
To show this, one needs to consider In detail how theyarious ¢’s and the
amplitudes are related. PN

For the assumed easc of incommensurablg{?mlods and a sufficiently
great number of measurements, we have Iatgely as a result of definitions
the following relations for the case of an array of n terms:

~

o 1 > 1 2N
(ag:)” = E" Z(Z - 7 = I E(?;)wa.dbl'aulibral'y_org_in

N T, o2 o’
O Eﬂ"fo “’25‘“2(?‘+3') @=5 U

N\
2 1 7 ‘—\; 2 1 Fn2
(0702 = — B2 LB =~ 2(")
N n
\/ ™ 12
~“§;~\ = —1" a’’? gin® Z—T- 1 & dt = a_ (5]
\ 3 jmr 5."” 2
AN (i
and \
S 1
s ALTS — ) =2 2 )
n n

=(? + 27 + #7240 [6]

Bl

Tn the above expression, the summation for the term 92" will yield

zero, since for the signs of the terms being summed the result will be
as often negative as positive. Bd. 6, with the aid of Eqs. 4 and 5, may

therefore be reduced to

arz an2 _
J— —_— P l’
2 + 2 + (73

1
gzz_:_z(zxz_‘_zuz +) =0'Z’2+0'Z”2 ,_I_
[
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From Egs. 4, 5, and 7, we obtain finally

gz

a o2

& o 8]
Tz

and

o N\ Y
LG N

Tq. 8 shows that the amplitudes of the various compnnerrt‘:«‘:M ¢ vary
as their az/0.'s. Eq. 9 shows that the sum of the ﬂquarg’:{:@f ihe various
oz/o.s must add up to unity. Ti then, at any lige ln an analysis
the sum of the valucs obtained for (67/0.)" equals:'unity, one may he
certain that the period analysis is over. Statelly” speaking, owing to
the approximations involved in the artifice employed and those oecur-
ring in Eqs. 4 and 5, one may expect Eqe28"and 9 to be enly APPTOXi-
mately fulfilled. What the expected reléﬁﬁo}is are for certain other types
of periodicities is the subject of a [31"01)1&111 at the end of the chapter.

An approximate amplitude a niay be obtained more directly. From
the Z’s of an array that yieldsls maximum oz /o, one may take for its
value one-half the JrSERUHRTAA @R groatest and the smallest
values algebraically congidered. However, the value thus obtained will
be exact only if the cbg)"Se\l #’s correspond to a maximum and a minirnum
for some particula®gomponent of the z of Eq. 1, if the number of items
is sufficient to ifsure that the contributions of the other components to
the various ¥ are strictly equal, and if the corresponding 1" is just
equal to gpomr.  Within its limitations, this method of ubtaining an
amplituicle haz considerable value.

3.{Application of Theory to Determinations of Periods. Dafa for a
f]{ﬁ(:ﬁon possessing two sinusoidal periodicities such as the 2 of lig. 1

“\are given in Table I and graphed in Fig. 1. Let us apply the theory
of the preceding section to this data to obtain values for 7t and T and
then later to evaluate a’ and a”.

Tnspection of Table T shows positive maxima oceurring at roughly
regular intervals. In terms of r, the intervals in succession are 9, 7
9,7,9,9,7,9, 7 and 9. One of the periods, T” say, would seem to be
ahout cquat to 8 sec, Let us make this assumption and construet
Table 1T in aceord with array A, (In what follows the reading 2 = 0 for
t = 0 gec has been inadvertently omitted. That such is the case is of
no materizl importance, however.) Should it have becn difficult or
impossible to obtain an approximate value for 1" by inspection, it would
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he necessary to assume various values for 7' and to determine in an
exploring way, using perhaps a part only of the data and the method
that follows, regions where the periodicities are actually located. Simple
inspection has climinated such exploration.

Computations, made in accord with the preceding scetion, when ap-
plied to the array of Table II, yield the values shown for 2, Z, 0z, o2,
and the ratio ¢z /o,. In determining the o's, it is well to use the short
method of Chapter VII, Eq. 13, namely

2
2 .
ol = = _ (_E_z) ra>

R n A
o\

Inspection of Table II shows that maxima tend to shift from leIﬁmris 2
and 3 to columns 3 and 4 as we progress through the tablesiIt would

- A A A ‘.\‘\A
= M— S
SN EAITAY WA Aura
A Y
i T

\
VATV
0 10 20 30 . ‘3{;\%"\@% n&ﬂ%)ﬁ}lliﬁ?’ﬁt‘y.m%.in

—&0 \v4
=ioc \

—1590

80 53

Fig. 1. Graph of the uon—harmurii(;;eriod{c funetion representing the data of Table 1.
neY

seern probable that if the effective value for 77 were made equal to 8.1
see or 8.2 sec, the gre};,tcst possible range for the values of Z° might be
obtained and postibly the greatest possible values for a7+ and for oz /o..

With the abOw® in mind, let us construet Table IIT on the assumed
hasis that Tl .20 rec. In so doing it is necessary to include the range
of 82 remﬁﬁgs rather than 80, as was done in Table II. Two readings
of thg\‘ég?"must be eliminsted. The basis for selecting the readings. to
beeopped follows, Starting with the assumption that the first reading
is o3 '.;L(:Lly in phase for an assumed eyele eovering 8.2{}. sec, one sees that
the phases of the next several readings lead progresm'vely with respect
to the readings that would be used were they available for reg}ﬂm‘
intervals 1.02 sce (= ¥4 X 8.20 sec) long. Nevertheless the .re:%dmgs
available are used in succession until it happens that by omission of
some one reading the phase differcnce, thereafter for a time a phase lag,

is roduced. Some reflection will show that, where there are 7 positions

in the array and that ¥ numbers from a total of # 4-7 numbers arc to
| sum of the phasc differ-

be dropped on the basis of a minimum for the
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ences, the positions of drop in the sequence of 7 4 r numbers are given
by the fractions n/2r + 1, 3n/2r + 2, 5n/2r + 3, cte. Thus for an
array of 80 with two numbers to be dropped out of a sequence of 82

TABLE

I

Varves, UnrorMny Seacep 18 TIME, ror 4 NOX-BARMONIC Yuxcrionw
or THE Tvrs SHowy 1x Eg. 1, anp Trmir Souines

"The * indicates maximum values. The arhitrary time interval, r, elapsing between suceessive readings

is 1.00 sec)
f a 1 ) { l N
(sec) z 2 (50¢) z z (sec) z\, W 2
0 0 o Il 28| — a8 | 2116 | 589N + 86 | 7,30
1 4116 | 1345 || 30 | — 87 7,560 || 80% +14ar | 20736
2 [4133* | 17,689 || &1 —115 | 13,2257\.B0 + 86 7,396
3 |+ 52 2704 || 32 | - 16 256\ 61 - 19 361
4 |- 48 1,849 | 33 | + 65 m%a 62 — 30 6,400
5 |— 5020 | 34 | 4 78¢ 15084 | 63 — 72 5,184
6 |— 59 3481 || 85 | 4 30 M(\W2500 || 62 | — 40 1,600
7 |- 3T 1360 || 36 | +2NW 841 || 65 | — 21 441
8 |- 24 576 || 37 | =l¢ 16 1| 66 0 0
9 I+ 9 81 || 38 |.%230 900 || 67 + 51 2,601
10 |+ 78 | sarewagbydullbiryorgirg || g8 | 104% | 10816
11 |4+114% ) 12906 | 40 ' —108 | 11664 || 69 | -+ 90 8,100
12 |4 68 462¢ 81 | — 32 1,024 | 70 -9 8l
1?2 |- 50 25008l 42 | + 90 8100 |} 71 —121 14,641
14 —143 20,34{)\ 43 +150* | 22,500 72 —143 20,449
15 |—122 | 1dsss || 4 | 4+ 90 8,100 || 73 — 30 2,500
16 |- T8 0 | 45| — 85 1,225 I 74 | + 73 5,320
17 4+ g7 \> 9400 | 48 —115 | 13,225 75 +122% ; 14,884
18 |4330* | 12,100 || 47 | — 97 9409 || 76 | + 77 5,929
19 51 2,601 | 48 | — 27 720 || 77| 4+ 8 9
20 K= 9 8L [ 49 | + 24 576 || 78 — 34 1,296
IS |- 33 1,089 || 50 | 4 39 1,521 79 — 44 1,986
d 2 |- 44 193 | 51 | + 50 2,500 || 80 - Bh 3,025
)23 |— 66 4,356 || 52 | 4 68* | 46424 | 81 — 67 4,489
2% =10 4,900 | 53 + 56 3,136 || 82 — 33 1,225
25 |- 14 196 [ 54 L — 18 324 || 83 + 52 2,704
26 |+ 85 7225 || 85 | —112 | 12,544 || 84 | +120* | 1664
27 |4140% % 19600 || 56 -128 | 16384 | 85 4113 | 12,789
28 |+ B84 7056 || 57 | — 44 1,936 || 86 - 2 ] 4
—_ _— - ——

numbers, the numbers to be dropped arc the 21st and 62nd.  Table I
shows the data of Table 1 arranged thus on the assumption that 77 =
8.20 sec. One sees at once from the positions of the maxima and from
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the correspondingly increased value for ez./o. that this second guess
regurding T’ is much better than the first.

Results from treatment similar to the above for additional assumed
valies for 77 of 8.10, 8,30, and 8.50 see added to those shown in Tables

TABLE II

Tuk Data oF TapLe 1 ARRANGED SIMILAR 10 ARRAY A ON THE ASSUMPTION THAT
1 = 800 BEC

[Fhe numbers at the bottoms of the columus are the mean Z"s. Ay in Table I, ¥ indicates a positive
maximire. The value for t = 0 see has been inadvertently cmitted]

4116 4133* 452 — 43 — 77 - 59 -— 37 -— 2

N
o\

+ o9 b 74 44 £68 — B0 —143 -1 - 7 R
497 41100 +51 — 9§ —33 —44 -8 -70 i=Z>+21
Z 14 485 F140% 4+ 84 — 46 — 87 —115 — 16

+Es +Tse 450 420 — 4 —30 -8 —l0g FAN O

" a2 400 +150* 490 — 35 —15 — 907 - 20% 718
+24 430 +50 +68% +5 - 18 —112 28

Dk 4 86 4144 486 — 10 — 80 — 72 \NH0 72 geag

~ 21 0 + 5 4104 + 00 — 9 -12D0CI143 o

— 0 4+ 73 41225 £ 7T + 3 — 36 T — 56

4150 +76.8 +02.4 +55.4 —11.5 —63 IW-87.3 —61.8
T@B\'I};E‘\Jldbraulibl'ary.ot'g.in
The Dars oF TApLE I ARRANGEDEILAR TO ARRAY A ON THE ASSUMPTION TIHAT
AT = 8.20 8¢

[The numbers &t the bottoms of ﬁ};@m’l’umns are the mean 75, Asin Tables I and II, * indicatesa
N\ positive maxirgwm]

116 $133% 4548 - 7T - B8 - —24

+ o 474 4M4¥ 368 — 50 —143 ~122 -~ 7 B

497 4110° 1 -9 -3 —66 — 70 —1; P=7'=+22
%5  +i40i )f g4 —46 - 8T -—I115 ~— 16 85

178* i\rﬁ\ 129 % T s —ws -3z or "9

L oop B0 + 90 ~—35 -5 — O — 27 2 o, =776

+300SF 50+ es* 456 — 18 —112 -2 —ad

+\§ﬁ‘:"+l44* +8 -—19 -—s0 —40 —21 0 92 _ o388

+ 8 41o4x +90 —9 —l21 -143 — 80 473 e

4122% 477 4+ 3 —#6 - 4 — 55 — 67 —3°

177.3 4103.2 466.7 —7.7 —65.5 —91.7 —64.6 +0.6

I and II1 are given in Table 1v. Plotted (Fig. 2),‘t-l'.1e curve .for
ozfos = f(T) shows a maximum at about 8.18 scc. This is the ‘penod
of the dominant frequency present. It is more difficult but not impos-
sible to estimate the period of the less dominant frequency by inspec-
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tion. Looking at Table I, one notes very high values of f{f) at { = 27
sec and £ = 43 sce and only onc intervening positive maximum uf
¢t = 34 sec. This maximum is much reduced in magnitude and ks nearly
midway between the other two. Further, there are two negative max-
ima in this interval, one each side of the midpoint, and both are inter-

mediate in value. The simple explanation is that both periodicitios had

TABLE IV

Cerrain VaLues ComprTep FrOM THE Dara or Tasue [ ox roe s

oF Vartous Assrven Perlopierries PrisesT a

2
7°N] N
T =7 (Zmax — Zmin) - I, ™ L4
{sec) ! 2 ‘ & o,
)
8.00 12.1 89.8 77.8 " 64,4 0,528
8.10 +1.7 90.9 T8 LAY 8.1 0.872
8.20 4+2.2 97.4 760> (8.9 0.88%
%.30 +2.3 81.8 26>t‘: 61,9 {1.808
8.50 -0.3 73.0 (&5 52.7 0.5671
—_— ’.. ) -
5.00 +1.8 www.dhké&é‘llbraryﬂfg&n 14.1 0.181
5.12 +2.4 830 77.7 27.1 (. 349
5.19 +2.0 A23.2 77.2 34.2 0. 443
5.25 +2.4 ,i“,\ 39.2 78.1 30.0 . 0.3%
5.31 +0.6% 81 87.2 77.9 28.6 | 037
5.38 +2 16.0 | 801 13.4 0.167
6.00 .-\!43.*0 4.5 78.5 3.1 0.040
o Ny -
."\“

separatd\pesitive maxima nesr the 27 and the 43 positions, that, though
the &18 see frequeney had a positive maximum near the 34 position,
’t-]:ug’less dominant frequency had a negative maximum at that point,
\?mtl that three periods of the unknown frequency are appmximatel}'
equal to two of the known., We should therefore expect the T of the
less dominant frequeney to be botween 5.0 and 5.5 see.  In accord with
the expectancy just deduced, computations based on various assumed
values for 7", ag shown also in Table TV and Ifig, 3, indicate the period
of this frequeney, despite the failure of one point to conform with the
others, to be about 5.19 sec.
The results for an assamed 77 of 6.0 see (Table TV) at some distance
from 5.1% sec show very definitely that that frequency is not present.
That the plots of Figs. 2 and 3 should give such definite indications
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i somewhat a matter of chance. For really satisfactory work, more
readings per eycle and a greatly ineressed number of cycles are desired.

Comparison of {(sz:/¢,) with {¢7/¢2) on the hases of Egs. 8 and 9
indicates (1) that the amplitude for the dominant frequency is twice

0.50 —
0.80 \k
LA \
G \

.70,
N
N
0.60 ¢\
8.0 8.1 8.2 8.3 8.4 85 '\

assumed Periods in Secoads « N\
Tia. 2. Values computed, using the data of Table I and Fig. 1, for « oy for various
assumed periods in ihe neighborhood of 8.2 seg, '\'\

that for the less dominant frequency and (2) that xo additional fre-
gquency Laving an appreciable amplitude is pressht,” Except for the fact

that these pericdicities are sinusoidal, these™e nclusions could not be
deduced without further consideration {(ge€ problem 2).

That the peaks of Figs. 2 and 3 arc 1ot more definitely resolved than

they are is a consequence of the pelative smallness of the number of

terms given in Table L. Were thef{l‘ﬁrr‘ﬁgefl hiaubibaathe aegdlmtion would
be oficetively doubled. The \eﬁ“cet s the same as in the resolution of

28 3
—i\ -
0405 S

2K —]

.“\,&’?.30 "
(N7 [P B
o\ 0,20 L ]

a \¥{ 5.0 5.1 5.2 5.3 5.4
- Assumed Periods i Seconds

Fls. 3. Values computed, using the data of Table 1 and Fig. 1, fore g0+, for Various
ighborhood of 5.2 sec.

assumed periods in the nel
spectral lines by a grating; the greater the number of grating lines, other
things the same, the greater is the resolution. _

An alternate procedure for determining 7 consists (1) in subtracting
from the data of Table I values for an assumed periodicity of 8.18 sec
whose amplitude s 97.4 and whose phase is zero for t = 43 8ec, an‘d‘(2)
in treating the results thus obtained in the manner that the original
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dats have been treated. This entails more work thun the inspection
method and normally would be used only in case the latter fails,

4, Determining the Amplitude and Phase Constants. 1 is advisable,
in view of the results already gained by inspection, to nttempl. its appli-
cation further. TLooking over Tahle T once more, it 3= found that an
absolute positive maximnm value for z occurs al poxition |13, Further,
the values of z for poritions 42 and 44 arve equal at least {o within one
part in 90, This suggests, despite, if not more strongly hecause of, the
readings for positions 58, 59, and 60, that

N\
a +a’ = 150 A [11}
2\
and that, if { were taken as zero at position 43, then (%
[(5’)’ = (") = -Tr] O [12]
2 las e L5

Eq. 11 combined with the conelusion reachgdubove thad o' /a” equals
approximately 2, leads to the (301’1(?1L18i07:l:ﬁbl't a’ and " may have the
values 100 and 50 respectively. It igzasimple matter to transfer to o
time origin correspending to that uded™n constructing Table 1. Doing
50, we find that N

[§£:}£ —2%]-0 [13]
www_db{‘?t]'sl)'br;ﬁr&%gﬁiirzj [14]

From the inspectionfl ‘enalysis we therefore conclude as an approxi-

mate expression (L™
\ 27 2w
z= 10.{}~si11\(—— £ — 2°) 50 si (——— £ — 2°) [15]
7 \B.18=rec + 80 sim 5.19 see

Letus e'@sri’parc Eq. 15 with what is obtained by a much more extended
detel‘m\in\ation of the four constants @/, ¢, &, and & by what we oxdi-
na}'i}}'f\conﬂider the “straightforward” mathematical methorl, which fol-
Jows. We shall make the same assumption as above, namely, that &

\”\} #'zero.  Although Table IV by its average vulues for z seems Lo indicafe
that @ may be of the order of 1.5, this may well be a consequence of
the small number ofterms.

For the evaluation of the constants on the proposed basis, it is neces-
sary to rewrite Eq. 1 in the following form

2

. 2
z = a -+ (g’ sin §) com ?ﬁ; t 4+ (o’ cos &) sin T

. 2 , 2w
+ {a” sin §") cos TT’ t+ (@ cos 8") sin s ¢ [16]
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Jn this form the constants to be determined are @, o' sin &, a’ cos §
¢’ sin 8, and @' cos §”. Selecting five points from Table I, and insert:
ing the appropriate values for z and ¢, together with the determined
‘values for 77 and 7%, in Kq. 16 leads to five simyltaneous linear equa-
tions connecting the desired constants.  Values for them may be deter-
mined by standard methods,

The authors, assuming a of Kq. 5 to be zero, have carried through
such compulations. The points selected corresponded to £ equal to 7,
18, 34, and 36 sec. In theory any four points could be chosen. Thesgs
were chosen on the basis that for these, position z varied but slowly

with 7. The resultant computed equation is ¢\
PR
c o 2T Ao . {2r - by _
z = 85.05in bg i 4 250° ] 4 479 sin r t+ 19? \ [17]

N

The constants of I2q. 17 do not check well (1) wit}"f}he eonclusion,
drawn In connection with Table TV and Eq. 8, thab the amplitude of
the first component is twice that of the second{2) with the original
data of Table I which shows at 43 sec thag .th} sum of the two ampli-
tudes must be equal at least to 150, nor (§)with the original equation

used in the construction of Table I, naely
2 ww_dbrat_xlllitgzrg.c)l g.in

. 2ew
z = 100.0 mn —E;.t + 50.0 s T

[18]

Iigq. 15 arrived at by thé.nspection method fits mueh more nearly
with the construction eq\ua.tion, Eq. 18, than does Eq. 17, which was
arrived at by straightforvard mathematical procedure. That the latter
method should fail"sih be explained on the basis of propagation of pre-
cision illd@xes'(\(ihép. IX). Tt perhaps suffices here to say that Cel-‘tftil'l
procecures, Starting with given quantities with moderate given precision
indexes, tand toward highly precise results for certain other computed
quantities when carricd through in a so-called forward direetion, and
thaf those same procedures will tend toward greater uncertainty of
results if the direction is reversed and the former initially given quan-
titics are now the quantities sought in the reversed pT‘OB(.Jdlll‘C. Evalu-
ating o', o/, 5, and & in terms of given 2 and 77 and 7" is such & baf.k-
ward procedure when contrasted with the forward procedure of finding
2, given those constants.

Failing the benefits of an inspection or other method, the best proce-
dure for finding the best equation of the type of Eqg. 1 w0}11c.i geom to
be that of (1) accepting an equation such as Eq. 17 as preliminary, _(2)
plotting the resulting curve of deviations, (3) computing the resulting
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variations for this eurve duc to scparatc small variations of T, 77,
@, ¢, &, and 8", and (4) adjusting the values of these constants to
yicld a minimum standard deviation in aceord with Gaussian theory.
Tven with the benefits of assumed possible inspectional method, ad-
justments in accord with the preceding paragraph may be neeessary.
5. Summary. Certain problems involve variations of fwo or more
components each having a poeriodicity of its own unrefated to that of
the other, When only the added effeets of these periodicities can be
measured, there is need of a procedure for their separate determingtions,
Granted a disturbance of the type

;O
. 2r , o o9 A N/
z=a+ ¢ sn -Tj,t—I—rS + g &in T”t—l—é,: - I1]

and data for z for a long series of cqually spa.g‘(f\cl’\’fnstu.nt,s ol time, 7,
one first inspects the tabulated data to determidiehn approximate period
for one periodicity. If an approximate p'{:{iod is not obtainable thus,
one must be assumed. . D ’ _

With a definite assumption of pc;'i'dd\ as m'r wherc m’ is a whole
number, the data arc arrayed as fpi].o’ws:

AN

2 2o 0N 23 2t
wowwr.d brau’l'ibl'ary.org.in

Bt 41 Zpr 42 @m'43 o Zawy

AN
Fam Pt Zamiye Fomeq3 T Fam’
A : . . [A]
™ Z Z's Xy e Zm

~E
of whkh“ the Z"s represent the averages of the corresponding columns.
Fo}f&t-his array the ratio of two standard deviations is sought, namely
qu}! Jos If this ratio is zero or approximately zero, w'r is not a period
\present in the data nor is it approximately such period. [f, however
this ratio differs from zero considerably, a period near m'r I8 present.
It then becomes necessary to array the data corresponding to periods
of (m’ = ¢€)r of which ¢ is a proper fraction. The procedure for this
involving the elimination of certain of the #'s according to an ordered
plan, is described in the text. The ratios oz/ /o, for geveral such arrays
are separately determined. The value of (m' 4 €)7 corresponding to
a maximum [or thig ratio is a frequency sought. Other frequencics ar¢
similarly determined by secking maxima of the ratio in other regions of
assumed frequencies.
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In ease the periodicitios are sinusoidal the ratios oz/o. are in propor-
tion to their amplitudes and the sum of their squarcs i unity. Pro-
cedures for determining actual amplitudes and phase relations for the
component periodicities are discussed,

PROBLEMS

1. Taking from the data of Table T those which are necessary separately for 13
and 14 eycles, compute two values for ogv/m, corresponding to 7" = 5.31 see. What
is your conclusion? N\

2. When fwo periodie funetions of the straight-side saw tooth type with diffe enth’
frequencies and amplitudes are combined, what are the expected relations &ﬁ&

o

sponding to those of Egs. 8 and 9?7 What gencralization may be made? ¢ \t\

« \/
{
7°%% 7
3
O
L "4
N¢
\
w
A2
R W
"
N/
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APPENDIX 1
BRIEF DISCUSSION OF DETERMINANT METHODS

Introduction. Throughout this text determinants are used (1) in the solu-
tion of simultanecus equations and (2) in the determination of the equations of
curves of sclected types that pass through sclected points, To the authors they
represent ruch time saved and simplified, generalized procedures. Recognizibg)
however, that many users of thig text will not have the necessary preparatu{n
simple though it is, we here present without discussion of underlying the@y“the
simple provedures for carrying cut the two proue*ﬁea indicated above. ™

The Solution of Simultaneous Equations, Consider the debemn‘mant solu-

tion for the following three equations. ,\'\
NN
Sx 42— 2=19 \/ 1]
%Gw—by— 2= T (7 (2]
5r — 4y + 32 =L x\ [3]
In determinant form they are .
19 2"::'.?-1
\—‘-6 —1
7w WWW dbraulibrary.org.in
PR " A [4]
LMs o2
\'\\"’ 2 -6 -1
If\ 5 —4 3
’\:f') 3 19 -1
- 13
J‘{\ y = _5_——— (5]
N . -1
AN 3 2
\\ w 2 '—6 -1
’ 5 —4 3
3 2 19
2 —6 7
5 -4 1
. e A (6]
3 2 -1
a —6 -1
5 —4 3
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The denominators are the same and consist of a determinant. enmpused of the
coeflicients of z, ¢, and z in Egs. 1, 2, and 3 arrayed in the order appearing there,
The numerator determinant for z differs only in that the coeflicients of 2 in
Egs. 1, 2, and 3 are replaced by the numerics on the right of the equality signs,
The numerators for  and z are similarly determined. In ease there are four
or more unknowns, expressions similar to the shove may be written for their
values. Each unknown will be represented by the ratio of twe determinants,
For the convenient evaluation of these determinants, there are several rules
which we shall discuss in general ferms previnus to obtaining ihe numerical
values ordinarily desired for the three unknowns. ~

The Evaluation of Determinants, Let us consider in suecessipn'the gen-
eralized procedures for evaluating determinants of the (1) second {Ql‘tllllcl and
(3} higher orders. O

"The standard form for the sceond order determinant and aﬁs al;_,nbram equiv-
alents are shown in the following cquations:

at ¥ i

L ¥
1 dg '”‘}\
= mh — ah} [7]
bi b N
The standard form for a third order determm\ant i
131 (Ia ﬂs
b % b (Al

www.dbra ﬁbl iy .dBglin

There are bwo convenient méthods to cvaluate it.
According to one mct‘nq\l the operator either draws, or sces drawn in his
mind’s eye, lines as nngated in the following form:

(8]

In ﬁhe evaluation the determinant is equated to the sum of the produets of items
onnected by the lines. Tn this equating one takes as positives the pr oducts Uf

_terms connected by the lines sloping generally downward to the right and a8

negative the products of terms conneeted by the lines sloping generally dﬂ“’“’
ward to the left. Thus we have

a1 @2 az
b b by | = ambees + @25301 + Gabics — aibacs — azblcg — aabzﬂx [8]
€1 € o3

As a general characteristic of the terms of the algehraie cquivalent of the deter-
minant, it is seen: that each row and column is represented in every such term
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The second method is based on the breaking up of the determinant into second-
ordor determinants ag follows:

1 @z @ .
b? bs b]_ bs bi b2
hh b b | =a — G2 + a3 f9]
1P O3 c1 £y [
€1 Cz €3

Lx sangion of these second-order determinants leads at onee to the expression
above., These smaller determinants in order are called minors of the
rrrvs (i, da, and as. Note that, in the expansion of the main determinant.in™\
terred of minors, the signs are alternately positive and negative and that,the
firnt sign is positive. For the one who makes considerable use. of determinants,
the firet, method is commonly used when a determinant of the third ordbr is to
e evaluated.

Clongider next the evaluation of & determinant of the fourth cn‘\hlgher order.
[he wmethod of Array B eannot be used. Instead we use thatgwén above as the
socorsd method for the third order determinant. Thus we have

\.
Ly Hp 4
. ‘ ! - by by be bl\éﬂ’ b4 by be bs
By By by B
L 1! = qy|ey Cg 04| — a|C1 £ 1]+ da el o Ca| — trg €1 ez o3| [10]
Poy g o O )
o C lead  asaSaad ladd

Jd vl . 7
LT A r.}_q tis

.ww’w dbraulibrary.org.in

of which the third order determingntstare to be evaluated as above, Note the
aHernate changing of signs. Wthg |tabyeads| for the main determinant and
Ay, Ag, A, and Ay ag the mindry to the elements @, as, &3, and a4, we have as
an :I.Lbrevmtcd form

ladisds] = axds — ads + asds — asds [11]

According to anot@ﬁrfncthad of breaking up, we may write
O |asbacsds| = ards — b1B1 + i — &by [12]
There qqusi§ other methods in fact. Based for instance on the second eolumn,

wo STt
\ 4 |ﬁlbzcsd4| = — CIQAz + bﬂBﬁ - 6202 + d2D2 [13]

The sign of any term depends on the loeation in the determinant of the item
preceding the minor, These are shown in the following array:

+ -+ -
- 4+ -+
+ - + -
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Rules for the Simplification of Determinants. The time required 1o evalu-
ate a determinant is often much lessened by the application of certain rules
which we shall state without giving proof. They are:

{1) If, from a row or column of a determinant, a common feetor may be
removed, that determinant may be equated to the product of that factor and
the determinant with that factor elininated from the row or cohunn in ques-
tion. Thus

3 2 -1 ls 1 —1]

2 -6 —-1|=2|2 —-3 -1 [14]
: O\

5 —4 3 5 -2 3|

A\ ¢
2\

{2} The elements of one row or eolumn may all be multipliedd 1% a constant
and added to or subtracted from the corresponding elements T auother row or
column without changing the value of the determinants \Thus

2%7 >

k W
3 1 -1 g 1 -1 f’j;.\:s 1 ~1
2 =3 —1|=|-1 -4 0opz2| -1 -4+ 0 [
#* 4 |
5 -2 3 5 -2 %l | 14 1 0

The first row was first subtracted froni“the sceond and then runltiptied by 3
and added to the last row. The a,gljijzuﬁ;age for the evaluation haz been the intro-
duction of zeros, www.d bl:a:iﬂﬂ;ral'y_org_in

(3) If the clements of a rowior a column of a determinant arc all zeros with
one exeeption, the deterrq'nant may be equated to the product of that elerment
and its minor with tlff{yppropﬂatc sign derived from array . Thus we have

N 1 —11 _
“ -1 —4 1 4
MN¥1 -4 0| = —1 ‘ = [16]
INY 4 1] 41
~& 141

the';lja.st step following rule 1. Ewvaluated in aecord with Eq. 7, the last deter-
mifhant yields —53. Accordingly the original determinant of Eq. 14 and the
\»\ \'denominators of Egs. 4, 5, and 6 are equal to —110.
(4) If two rows or two columns of a determinant are equal or the elements
of one are in direct proportion to those of the other, the value of the deter-
minant is zero. Thus

642\ 6 4 2
S 4 3i=|843|=0 {17]
-]968‘ 000-i

a consequence in fact of Tule 2 and of the general characteristic of the terms 0
which a determinant may be equated as noted above in conneetion with Baq. 8.
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Applying the general and special rales for the evaluation of the determinants
of Bqe. 4, 5, and 6, one obtaing

o - [18]

y= 10 _,
110 [19)

550 .
2= O [20]

Were all sets of simultaneous equations which are to be solved of no higher
order than three and were the coefficients always simple whole numbers, .it:is.
doubtful that the time-saving feature of determinants would be of much/value.
When, however, the order is higher than three and the coefficients\ afe not
simple, there is no question but that the determinant method is advisable.
There are additional special rales which have becn develogég'\sind proved,
We shall not have need for them, however, )
Equations of Specific Curves by the Determinant Method. The determi-
nant procedure for the determination of the equation, olﬁa specific curve is the
same whatever the general form may be. For the §tr§ght line of the form

g+ atbs =0\ [21]
passing through points (3,5) and (6,2), foz :it;ist.;a,nce, the equation is

g 1 ~i':: w.dbraulibrary.org.in

» 2 = 2
:é Sl 3| =0 [ 21.
\4\2 16

Reduced to an algebraiet fprm in conformity with the procedures and rules
outlined above, this yields

N y—8+2=0 (23]
For the thjrg{ﬂe?g}ée equation of the form
)\ y 4 o+ bo 4 ex? + dad = 0 [24]

pasr;ing\j;]‘;l\m.ugh four points {corresponding to the four arbitrary constants)

namelyA0,2), (2,5), (4,10), and (6,12), the equation s

y 1 = 22 2
210 0 1]
512 4 8|=¢0 [25]
i0 1 4 16 64
12 1 6 36 216

The determination of the algebraic form is left fo the reader.
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Tor an equation of the form
vtay+btext+dit=0 [26]

passing through the points listed above for Eqs. 24 and 25 the cquation i
similarly

¥ ¥ 1 x 2

4 210 0

25 5 1 2 4|=0 (27
100 10 1 4 16 S

144 12 1 6 36 \'\:f

The determination of the algebraic form is left to the rcader

The vceurrence of a column each element of which iss 1‘1111ty may be slightly
disturbing at first, Tts presence is understood Wh(‘.n\{t\la seen that these de-
terminants are composed entirely of the coefficiciiti\ol the undetermined con-
stants and of the constant arbitrarily taken as\unity and that the so-called
constant term of Eq. 26 for Instance may be, f18wed as b3° or by® or a combina-
tion and that #* and y° are unity. v

Often in the determination of equatlons the operator may sclect certain con-
venient points for his purpose. So dcnng, the necessary computations may be
greatly abbreviated, If addltlona]ly certain simplifying changes of variables
may be employed, an ﬂddﬁjﬁ]ﬂhghdﬁdﬂ;mtiymrg mmputational effort sometimes
results. Ilustrating these prodedures, we shall consider the data of Table T
wherein is presented thedime-temperature relation for the constantly stirred
liquid of a calorimeter {0 which heat was supplied cleecrically at a constant rate.

o\

O TABLE T

Dars SHOWh\G THE TIME-TEMPERATURE RELATION ror ToE LigUin oF A

CN,ORJMETER BUPPLIED wWITH H_E.A’I‘ aT A ConNsranT BATE
"\s

\ ’ fin min T in *C { in min Tin °C
R\ 0 20.95 9 34.65
AN 1 22.60 10 36.10
2 2420 il 7.50
4 3 25.76 12 38.90
4 27.30 13 40.30
5 28 .80 14 41.70
6 30.30 15 43.05
7 31.75 16 44 .40

8 33.20

Let the purpose be that of determining values of d'T/dt for various temperatures
such as 25° C, 80° C, 35° C and 40° C. We first seek T = F() and for therela-
tion let us assume

T = Ty+ at + bt? [28]
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Muking use of the selected-points method, which is described fully in Chapter
LIT of the text, we select points corresponding to 2 min, 8 min, and 14 min as
fairly represcntative of three roughly equal groups into which the data may be
divided. The determinant equation, disregarding the units of measurement,
that results is

T 1 ¢ 8
2420 1 2 4
=10
3320 1 8§ o4 [29]
4170 1 .14' 196 2\
This may be solved directly, but let us introduce certain new aimplifﬁﬁﬁ',\db
mensionless variables, e.g. O
T —33.20°C "l
= —— NN 30
RS oy
and _ : o\ N
_t—8min 4 [31]
6 min x.\\,,‘
Rewritten, Bq. 29 becomes -~ v
¥ 1 mQ ;":E; 4
—900 1 =INd
R\ N =0 [32]
00 ‘ﬂ(ﬁvwglblaa library.org.in
g0, 1 11
This simplifies a{ once, ii\\t&i\éﬁ; of rule 3 above, to
‘ », y .
N S
O —~9, -1 1 |= 33
N 00 0 [33]
{;\;s. s, 5{] 1 1
which ah,np'\ce reduces to
ANy y = 8.750 — 0.2522 [84]

A
a\"4
%&rfﬁcation shows that no computational errof ha.fs been m_ade. I:Iow welll ?.he
equation fits the data as a whole may be deterrmned easily. Differentiation

leads to
% _ 875 - 0.50z {35]
dic

For dT'/dt, the quantity desired, we have
ar  dy dzdl (36]
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Substitution, for the condition that ¢ = 5 min, leads to a desired result, namely

=]

(‘E) = (8.75 + 0.25) ~1— 1C° = 150 ©
5 min 6 min

dt min

[37]

Other values for 4T/df follow quickly. Obviously with slight practice, one will
see that the writing down of Eqs. 29 and 32 is needless. Possibly also he will
be able to obtain Eq. 34 from Eq. 33, if written at all, by inspection. It is
evident, however, that the selection and the change-of-variables procedures may
simplify compuiations greatly.

PROBLEMS A\

1, Solve the following equations for =, ¥, and 2. N

20 4+ 3y +2=10 "\
r+y+2:=15 ~‘
T —z=2 ~.;\'\'

Bolve the following equations:
wtzr+y+z=0 N
w4y =2 RS
z+y+z2=4 *\
wt+z=1 L

3. Find equations for straight linesvp?;éfng through points
(g} (3,0) and (2,9); www.dbr}a:ﬁ[ivbral'y_org_in
() (0,4) and (6,0); N
(¢} (—2,3) and (3, —4).,.L

4, Find equations for arii;;é of type ¥ = g + bz 4 cx® through
(2} (0,0), (4,6),and (12,8);
(b} (_3,0}! (2.;: :ﬁ): and (73 “10);
(ﬂ) (—3,0), @j_ﬁ)s and (752)

5. Find Q@i@tiﬁns for a cirele passing through the points
(@) X0}, (2,2), and (4,8);
. 6=4,3), (3, —4), and (4,3).

5 Find the equation of the conic passing through the points (0,0), (2,2), (4,8),
\”@12), and (—2,8). _

7. (@) Express Eq. 25 in its normal algebraic form. (b) Express Eq. 27 in its
normal algebraie form.

8. Using the data of Table I, but selecting values corresponding to 3, 8, and 13 min,
determine values for dT/dt corresponding to { = 5 min, 10 min, 15 min. Check the
value for § min with that given in the text.

8. Using the data of Table I, determine an equation of the form of T =
To + at + b2 + e to fit the data. Also determine 47 /dt for ¢ = 5 min.
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TABLES
TABLE It
Tre ProsapiiaTy COEFFICIERT §hy FOR THE Nonmar DierripuTioN CURVE
1
tpe = —= ¢ an A FuNCTION OF hz
e O
Frequently in tables values of 2yp; are given in place of gre A\

To oblain values of Yz/o 08 G function of ¢/a, determine in order for eachg%%é’n z/e,
a corresponding hz {= 2/4/26), & ype 85 given by the table, and gopy’' (= hodhs
= e/ 2).  To obiain values of Ye/p 85 8 Function of /P, deterhite in order for
cach given z/p & corresponding hee (= DA77 2/p), B Yue 88 givefi/by the table, and
& ¥z/p (= hp ynzs = 0477 Yrz). To oblain values of Yz 43 a,fu}c?éon of x, one must
have a value for k, o, or p. Given k. determine, for ach given z, a correspoend-
ing hx, a ¥uz a5 gKiven by the table, and a ¥z (= hyaé‘ )

N 4aE

XY
06

hz 00 .01 02 03 .04 LLSNY A7 .08 0 Diff.

o)
0.0 |0.5642 | 0.5641 | 0.56840 0.5637 | 0.5833 :@-5523 0.5622 | 0.5614 | 0.5806 0.55¢6 | 0.0008
0.1 BSHRG 5574 | sa61 1 .BG4T .5.53? 5516 | 5489 | .5481 5462 5442 § 0OTT

o2 | 5421 5308 | 5375 | 535l | @k EBBR-nuREd- n—f@ 216 | 6187 ) 0024
na 5156 | 5126 | 5083 | .5080 5026 | 4001 | 4956 yoi B-Ylez | 4ge6 | 0035
04 | 4808 | 4760 | 4730 4689, 4642 AGO8 | 4566 | 4624 | 4481 | 4438 0041

4915 | 4189 | 4123 4077 | 4030 | 3983 | 0046

05 | 4304 | 430 | 430544260
%53 | .3505 | 0048

.6 gosa | amsp | asal N 5764 3746 | 3698 .
0.7 3455 | 3408 | L8860 | 3311 3263 3215 | .31e8 | 118 | 3070 3023 | 0048
0.8 o075 | 2027 A \asB0 | 2833 | Z786 ‘o730 | 2603 | 2047 | 2601 2555 | 0047

0.9 2510 | .24BsY. 2420 | 2376 0333 | 2288 | 2245 o902 | 2159 | 2107 0043

A
o
k=1
S
b i
-z}
k=4
=

4058 | 1918 | 1873 1834 | 1788 | ATHY 720 | 0030

10 | =zome | fodse| 1063
aos | 1460 | 1435 | Aoz | 1869 | 0035

11 | sz ).ieas | .Jevw | 1574 | 1538
12 1 ¥ 305 | 174 | a2e3| aziz| 2183 LS8 L 1096 | .106s | .0030

Qoo62 | 0837 oa12 | DesT | 0884 o840 | .oB17 | 0028

. .‘sss\
13 | \fedl | 1014 ) 0888
‘ogse | 0669 | 0830 [ 0631 0613 | 0020

L4 No7es | 0773 0751 07D aron

5 | 0595 | J05TT 0560 | 0543 | (0527 0511 | 0495 | 0480 0465 | L0450 | 0018
1.6 0436 | 0422 | D409 | 0306 0383 | 0871 p3so | 0347 | 0835 0324 | 0012
L7 0314 | 0303 | 0203 .0283 0273 | o264 0255 | 0246 o227 | o2z | 0000
18 0221 | 23| pooe | 0198 oioL | 0184 | 0177 0171 | 0185 | 01588 0007
1.2 0153 | 0147 0i41| 0136 | 0131 o126 | 0121 o118 | 0112 | 0108 D005

———

o

0.3 04 0.5 0.6 0.7 0.8 0.9 Dif,

hz 0.0 a.l 0.2

——

20 0103 | D09 | .D04S o028 | D018 0011 ] 0007 0004 | 0002 0001 | 0010

__________.—-_________________————-—-—-—
1 This table is based on Teblss of Probability Punctions, Vol. 1, Federal Works Ageney, Work Projects
Natipnal Bureau of Btandards,

Administration for the City of New York, 1841, sponsored by the
317
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TABLE II!

2 e
VALUES OF THE PROBAPILITY INTEGRAL Py [ v f o PR d(h,z)]
7o
a8 & Foxerron oF bz

Frequently in tables, this integral is designated by Pr. The P/, corresponding lo a
given, x/e limit is the Ppg of the table which corresponds to the kx (= x/4/2 )
for the given x/o limit. The Py corresponding to o given x/p Hmil is the Py, of
the table which corresponds lo the hx (= 0.477 z/p) for the given z/p limit. The
P, correspanding to a given x-limil is obtainable only if the appropriate va.lu(‘\f or k,
o, or p is known. Given k, it may be read from the table as the Py, wrrespondmg
to the hz for the given z-limit. K¢ M\

hz 00 01 02 03 04 03 R 07 -l 09 Hff.
[

0.0 | 0.0000 | 00113 | 0.0226 | 0.0338 | 0.0451 | 0.0564 | 0.0876 M?\sg 0.0901 01013 | L0112
0.1 125§ 1236 | 1348 | L1459 | 1569 | L1680 | L1TOOT\N1800 | 2000 | 2118 | 0110
a.2 2227 | 2335 | 2443 | (2550 | 2657 | 2703 | .286@\\N2074 | 3079 | 3188 | L0106
0.3 3285 | 3390 | 3491 | 3503 | .38G4 | .3704 | ,3893) 3002 | 4090 | L4187 ! 0100
04 A2R4 | ABRD | 4475 | 4569 | 4662 | 4765 |pC4SAT | 4037 | 5027 | L5117 | 0092
0.5 A206 | 5202 ] 5379 | L5465 | BH4D .5G§3. AT16 A70R | BBVG | h8A9 OU83
0.8 £039 | 8117 | 8184 | 6270 | 6346 | B420 | A494 | 6566 | BG3S | LATOS | 0074
a7 BTT8 | 5847 | 6014 | 608D | TO4TG\LT1I2 | T176 | 7238 | 7300 | (7361 Q064
0.8 T421 | F4B0 ) 7338 | .YA95 .'.":Gﬁ:l’ JT07 | O TT6L 7814 | TB6T | T9IB .00as
a.9 JO6% | .R019 | (8088 | 8116 | ~8188 | 8200 | 8254 | 3200 | .8342 | .B385 | .0048
www.dhraulibrary org.in
10 | 8427 | s468 | 8508 | 85481V .ssse | 624 | 8661 | 8608 | s7as | 768 | 0038
11 8802 | 8835 .B868 | #0008 | .863L1| mus1| 8901 | 9020 | 0048 | 8076 | L0030
12 0103 | 0130 | 0155 (00181 | 9205 ) .Go2%p | 232 .u2vs | 9207 | w31 0024
1.3 0340 | 9361 | pasa\| Jedon | 9419 | 9438 | 9456 | 0473 | sao0| 9307 | 0018
1.4 0523 | 0530 Gs,i} 0560 | L0583 | 0507 | 9611 95624 | 0637 | 9649 | 0014

1.5 9661 | 9073, N\H681 | 9895 | o706 | 0716 | 9726 | L0736 07457 0755 | L0010

1.6 0763 9?7‘2 F o780 | 9788 | BTBA | L9804 | 9811 | .H8IS| .0825 | .OR32 007

1.7 JBE3E | Q54 | 9530 | (OR566 | 9861 | DSGT | BST2 | .ORTT | DSR2 | .OBS6 0u05

1.8 REEIDN 1¢ #8953 | 8308 | .0903 | 9807 | 8911 | 9915 | .9Y1%| 0922 | 0025 0004

19 .%28\ 09311 9934 | 0037 | 09301 9942 | 0944 | 0047 | 0040 | 9951 | 0003
0

Moo ! o1 | o2 | 03 va| o5 o6 | or | os | oo

\ 2.0 D853 | 9970 | BOR1 | DO89 | 9903 | 009G | 0008 | 009U | .GO0pY | .DOSY3

1 This table js based on Tobles of Probebility Funsetions, Vol. 1, Federal Works Agency, Work Projects
Administration for the City of New York, 1841, sponsored by the National Buresu of Standards.
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TABLL IIT

CrauvENET's CRITERION. LiMiTiNG VALUES OF Az, z/s, AND z/p CORRESPONDING

70 VaRrous NUMBEES OF ITEMS, #, FOR THE TxCLUsION OF AN ITeM FROM 4 SET

oN THE T348IS THAT, IN COMPARISON WITH TTE Orueg ITeMs, It EXERTS Too GREAT
ax InvLoENcE oX CoMPUIED YALUES

n hx xfe T -n, hz i xip
5 1.16 1.68 2.44 20 1.58 g2t | 2.:280
1) 1,22 1.73 2,57 22 1.61 2,28 3438,
7 1.27 1.79 2,68 24 1.63 2.81 | {34
8 1.32 1.86 2.76 26 1.66 2.35 {.)8.47
9 1.35 1.92 2.84 30 1.69 2.:{9.?‘3 3.55
D
10 1.39 1.96 2.91 40 1.77 (250 3.70
12 1.44 | 2.03 | 3.02 50 1.3{\; 2.58 | 3.82
14 1.49 2.10 3.12 300 108N 2.8 4.16
16 1.52 2.16 3.20 200 |, (14 3.02 4.48
18 1.56 2.20 | 3.26 500, 2038 | 3.29 4.88
; N
R\
"\
\““
RN ww.dbraulibrary.org.in
A
o)
K\
7N
,'s\‘.)
NGO
«,;J
\:"\:{'
O
S
l‘\“
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TABLE V1

SHOWING VALUES of CORRETATION COEFFICIENT r CORRESPONDING TO VaRIOUs
Vawues oF Fisawr's z-FuncTion

s 101 02 3 04 05 08 o7 08 09 10

o0 |o0100 | 00200 {00300 00400 100500 | 00509 | 00609 | 00798 | 00898 | 00097
01| 109G 1104 1293 1891 1489 1586 1684 1781 1877 1974
02| 2070 2165 2260 2355 2449 2543 L2636 2729 2821 2013
03| 2004 3095 3185 B275 F364 3452 3640 3827 3714 as0a] N\
04| 3883 3060 4053 4136 4218 4301 4332 4462 4542 4623
05| 169D ATTT 4854 4930 5005 080 G154 5227 5298 |4 3&70
5441 5511 EiLED] 649 Rira b BT84 5850 H915 5980, \.15044
07 6107 6169 6231 6201 £351 H4ll £468 B327 B35 | 6640
Rt B751 G803 HELR Ba1l 6963 014 T064 TE14 7163
05§ 7211 7259 TA06 7362 7388 7443 T487 7531 (L VEg4 7614
10| 7458 7609 7738 7779 JE18 7857 7505 7932 b \To6e 8005
L

=
=3

1.1 204t BOYVE 8110 8144 8178 8210 8243 8275 8306 8337
12| s3e7 | sser | s4ze | sash | B33 | L8511 | .BG3B\W8565 | 8ROl | BAIT
1.3 Bh43 8668 8662 B717 BT41 BT6d BI8T BR10 LBR32 | ‘8854
14| 8875 | .8se¢ | .s017 | 6837 | 8957 | .BWV L&o0s | o015 | 9033 | .B0SL
15| opose | gos7 | wwa | g121 | $138 | 015, Ngl7o | 0186 | 9201 [ 8217
16| o232 | oeap | 61 | ovs | ozso | .esbaN\J.e3le | 8320 ) 9341 8354
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1ol os7oui osroz| ossrs i 95053 | .De032|\.56100 | 96185 | 96259 | 96331 06403
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x“rum K. A ¥isher, Siatistical Melkods for Ressurch Workers, London, Oliver & Bayd, 1938,
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TABLE VI

Saowing THE Makmur or Tos CONSTANTS OF THE LuasT-SgUARES LQuaTiov op
THE TYPE y = @ + bz + w2? + dr® ror Equarions or VArYING DEdrers Wien
THE ABRREVIATED METHOD or Barny ! AND oF Cox anD MaTuscaax ® 18 Usen

This method is applicable only when succeeding values of 2 have a common differ-
ence and are equally weighted. The independent variable, changed if necessary,
must have 4 zero value at the midpoint of the series with suceceding values dif-
fering by nnity if the number of terms is odd and by two if even. Values for the
vurious k's, as computed by Cox and Matuschak, are to be found in Tablai\"ll
and VIII of this appendix. \
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o b [ ""\ W d
A M

1° k1T ks Szy ‘ \' ‘

2 by — kala®y | koZwy i:&@*gy — kiZy

3 ksZy — haZx®y | keZay — EEPPpNsZaly — kZy | keZoty — Bz

! Baily, J. L., Ann. Moth, Statistics, 2, 355 (19?1) 3
% Cox, G, I., and Matuschak, M. C., J, Phys, Chem., 45, 362 {1941},
WWW. dbﬂ@uhbral y.org.in
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TABLE X
a "
Sums oF INTEGERS Zm ANT OF SBQUARES or INTEGERS Em?
mel
Fi=1
For UsE 1N LEAsT-SqUaRES SoLUTIONS
® » a n
n Em mE " m ?
Ml m=1 ] =4 A
1 1 1 26 351 6200
2 3 5 27 ais | (8930
3 & 14 28 406 AN 7,714
1 10 30 29 4359\ 7 8565
5 15 55 30 165 © 9,455
6 21 01 31 \496 10,416
7 28 140 32 /p 528 11,440
8 36 204 33 LV 861 12,520
9 45 285 NS, 595 13,685
10 55 385 L35 630 14,910
11 66 506 N 36 666 16,206
12 78 650 w:g\r\'.vw_d%‘aulitrarym%.in 17,575
13 91 819" 38 741 19,019
14 105 1\215 39 780 20,540
15 120 (14,240 40 820 22,140
\\\Q,/

16 136 N\ 1,496 41 861 23,821
17 153y | 1,785 42 903 25,585
18 v 2,108 43 946 27,434
19 N0 2,470 4“4 990 20,370
20 Y210 2,870 45 1,038 31,395
21 4 231 3,311 46 1,081 33,511
RN 253 3,795 47 1,128 35,720
@ 1 276 4,324 48 1,176 38,024
24 300 4,900 49 1,225 40,425
25 325 5,525 50 1,275 42,925
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TABLE X

LoGARITEMS TO THE BASE ¢

ot Napicrian)

Theas two pegea give the nnturl by~
logarithma  of
numbers between 1 and 10, currect to
four places. DMoving tha decirsl point
7 plnces to the right {ar left) in the mm-
ber in equivalent to adding a timea 2.5026

Gor # times 3.6074) Lo the logarithm.
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2 3
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3661 3636

3913 3938
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4398 4422
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4
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G093
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3063
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2355
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1398
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3001
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4333
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6678
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¥
3
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L]
7
kS
9

B
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1434
2311
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3784

4447
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2754
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3297
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4540
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4996

5217
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5351
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0.2767-21

9 10

0862 0.0053
1740 1823
2545 2624,
3293 3368
3088 403
4631wfu§ho
S24%,J 5306
5822 5578
8366 6419
6BR1 0.6931
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0613 0647
0953 1.0986
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4327 4351
4563 4586
4783 4816
5019 S04l
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TABLE X
Loq, (Bass e = 2.718234)
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soi7 7066 7034 7102 720 7138 71s6 71n4 702 M20 AN 24 579
Jo3s 7246 7263 TASL 7299 7317 U334 YIS U0 USET VA0S 2 4 579 \
T 7422 7a4p 7457 7ATS 7492 7500 7527 7SH4 US6l 779 2 3579
T hes 7630 Tew7 oot 761 7650 6 7733 TS0 23§ T80
7380 7766 1781 7800 TRT 734 7851 7867 7884 7901 17918 2 3 S e
L7018 7934 7951 7967 7954 DL SDLY 8034 5050 8066 8083 2 3 “ps
T oo $116 132 348 8165 8181 8197 33 820 EMS ZI\se7 B
O ohes w7p a4 8310 G326 M7 B3E B34 8390 8405 A3 6 8
B Ba71 pas7 3453 540 B4ss  B300 8516 8532 9547 BSEH 7R3 S 68
B Si79 gses BOLO 8625 864l 86s6 §GT2 B6A7 8703, ANE T2 3 5 6 8
ey B33 §70 S64 $770 8795 6810 2825 8840 SBEGLEML 2 3 5 6 8
3671 shup 5901 016 SUSL EviG BEL BTG 3991 400G goz1 23568
B 3036 g0il socs o081 9095 9110 9125 GLOINSS BLE3 1.3 4 67
olto 9184 9109 SA13 9218 9242 9257 0272 92:?653 @315 13467
S ohap o34 0350 5373 9367 9402 9HIGAGN0 9445 Lo 1 3 4 67
Losse o473 oass 9502 9sl6 9530 044 9BEDNEETS esar sl 13 A8
s amo 9eas o6s7 967l gess e om onar oML 13 4 B
L ahes o7e2 0795 Ogl> 9S4 ONS 9851 9865 1819 13 4 &7
19879 939 9006 9920 93 99T gL go7s 9968f0001 20015 13 4 57
20015 0028 004Z 0053 0069 9096 0109 0173 Q136 0149 1 3 4 5 7
0149 Ol62 0176 0189 0202 on?‘”’ﬁé"igd&‘.ha'éiibmy g ima4sT
0381 o295 0308 0321 033 0947 0360 0373 0386 O 13457
0412 0425 0438 0451 0477 0490, 0503 0516 e G 13456
0S4l 0SS5t 0567 0SB % 0618 631 0643 DS 0669 1 3 4 5 6
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136, ° /1335
1 Y 135?
:%“ 1399
N 1430
S 140 01451
141 1402
142 1523
143 1553
144 1584
1.45 1614
146 1544
147 1673
148 1703
148 1732

APPENDIX 2

TABLE X1

Locanrrnivs 7o THE Base 1)

i

0004
048
GOS0
Q133
0175

0215
0257
0258
0338
0378

{418
0457
0456
0535
0573

0611
48
5213
o2z
0759

0795
831
0867
0903
0938

0973
1007
1041
1075
1109 -

114 %16
11?

1742
1274

1307
1339
1370
1402
1433

1464
1495
1525
1556
1587
18617
1647
1675
1706
1735

2 3 4 5 6 7 8 9
0009 0013 0017 0022 0026 D030 0035 0039
0052 0056 0060 0065 0069 0G73 0077 0082
0035 0099 G103 0107 OL11 0116 0120 D124
0137 0141 0145 0149 0154 QISB OL62 Ol6e
0179 0183 0l87 0191 0195 0199 0204 0208
0220 0224 0228 0233 0237 0241 0245 0249
0261 0265 0260 0273 0278 (262 0256 0290
0302 0305 0310 0314 0318 0322 0326 0330
0342 0346 DI50 0354 0358 0362 0366 0370
0332 0386 0390 0394 0398 0402 0406 041}
0472 0426 D430 0434 0438 0441 0445 0449
0461 0465 0469 0473 0477 481 0454 D483
0500 0504 0508 0512 0515 0519 0523 0527
0538 0542 0546 0550 0S4 0558 0561 0863
0577 03520 0584 0588 0592 0596 059940403
06150618 0622 0626 0630 0633.0637)0641
0652 0656 0660 0663 0667 067INISZY 0678
068G 0593 0697 G700 0704 0I0ENOTIL 0715
0726 0730 0734 0737 QT4 A745/0748 0752
0763 0766 0770 0774 6381 0785 O7sB
0799 0803 0806 08104 N\(BI3 0517 0821 0824
0835 0839 0842  0846{ 'GB4D 0BS3 08SH 086D
0271 OB74 OB7S O8EL “OSBS 0888 0892 0806
4905 0910 0913 G017 ° 0920 0924 0927 0931
0941 0945 0948, \ 0952 0955 0953 0962 0966
0 ; . 0997 1000
1%&’%@.@“%@‘ N é‘ozs 1031 1033
1045 1048 1052 1055 1059 1062 1065 1069
10791082 1086 1089 1092 109 1099 1103
111»3\115 iy 1123 1126 1129 1133 1136

1140 1153 1156 1150 1163 1166 1169

1183 1186 1189 1193 1196 1199 1202
209 1212 1216 1719 1222 1225 1229 1232 1235
1245 1248 1252 1255 1258 1261 1265 1268
1278 1281 1284 1287 1290 1294 1297 1300
1310 1313 1316 1319 1323 1326 1329 1332
1342 1345 1348 1351 1335 1358 1361 1364
1374 1377 1380 1383 138 1339 1302 1396
1405 1408 1411 1414 1418 1421 1424 1427
1436 1440 1443 1446 1449 1452 1455 1458
1467 1471 1474 1477 1430 1433 1486 1459
1498 1501 1504 1508 1511 1514 1517 1520
1520 1532 1535 1538 1541 1544 1547 1550
1559 1562 1565 1560 1s72 1575 1578 1581
1590 1393 1596 [599 1602 1605 1608 1#1l
1620 1623 1626 1620 1632 1635 162% 1641
1649 1652 1655 1658 1661 1664 1667 1670
1679 1632 1685 1688 1601 1694 1697 1700
1708 3711 1714 1717 1720 1723 1726 1729
1738 1741 1744 1746 1749 1752 1755 1758

10
0043
0086
0123
0170
0212
0253
029¢
0334
0374
w14 N\ \
o453\

04

G531
0569
0607

0643

0682
0719
0755
0792

0823
0864
0899
0934
0969

1604
1038
1972
1106
l139

1173
1206
1239
1271

1303

1335
1367
1339
1430
1461

1492
1523
1553
1384
1614
1644
1673
1703
1732
1761
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TABLE XI

Locarrrass To TeE Basg 10

0 1 2 3 4 5 6 7 8 9 10

L.50 pivel 1764 1767 1770 1772 1775 IVVR 1TEI 1784 1767 1790
1.51 1790 1793 1796 1798 1801 1804 1307 1310 1813 1816 1318
1.52 1818 1321 1824 1827 1830 1833 1536 1838 1841 1844 1847
1.53 1847 1830 1853 1855 183R 1861 1864 1867 1B70 1872 1875
L54 1875 1878 1881 1834 1386 1839 1393 1405 1888 1901 1603

1.55 1903 1906 1909 1912 1515 1917 1420 1923 1926 1628 1931

156 1931 1934 1937 1940 1042 1945 1948 1951 1953 1956 1959 %
1.57 1959 1962 1965 1967 1970 1973 1976 1978 1941 1084 1987 N\
1.58 1987 1935 1992 1995 1998 2000 2003 2006 2009 2011 2014 A

152 2014 2017 2019 2023 2025 2028 2030 2033 2036 2038 2041 L, { N

1.60 02041 2044 2047 2049 2052 2055 2057 2060 2063 2066 2068 wn\ ¢
1.6l 2068 2071 2074 2076 2078 2082 2084 2087 2000 2052 20058,

162 2005 2098 2101 2103 2106 2109 2111 2114 2117 2119 m,éz

163 2132 2125 2127 2130 2133 2135 2138 240 Z143 2144, <2148

164 2143 2151 2154 2156 2155 2162 2164 2167 2170 2172/)2175

165 2175 2177 2180 2183 2185 2188 2191 2193 2196-2098 2000
166 2201 2204 2206 2209 2212 214 2217 2210 J3iaads 2207
1.67 2227 2230 2932 2235 2238 2240 2243 2245 Q4B 2251 2253
1.68 2253 2256 2258 2261 2263 2266 2269 237\’:\2;14 216 2279
169 2279 2281 2284 2287 2289 2292 2294,238P 3290 2302 2304
1,70 oz304 2307 2310 2312 2313 2317 mﬂ\azz 232§ 2327 2330
171 2330 2333 2335 2338 2340 2343 D23$ 2348 2350 2353 2355
172 2335 2358 2360 2363 2365 2368 \ 2370 2373 2375 238 2380
173 2380 2383 2385 2388 2300 2393 o 2395 2398 2400 2403 2405
174 2405 2408 2410 2413 2415 (3418 2420 2423 2425 2418 2430

L.73 2430 2433 2435 2438 2444""2443 2445 2448 2450 2453 2455
176 2455 2453 2460 24632488/ wowsl havaw Bz ans @478  irisa0
L7 2430 2482 2485 2487 2400 2492 2494 2497 2499 I5 2504
1.78 2504 2507 2509 251 2514 3516 2519 3521 2524 2526 2529
170 2529 2531 253302836 2538 254l 2543 2545 2548 2550 2553

1.80 02553 2555 £558)2560 2562 2565 2567 2570 28Y2 2574 2577
L8l 2577 O5PH 2582 2384 2586 2589 2501 2594 2596 2598 2601
182 2601 D602 7605 2608 2610 2613 2615 2617 2620 2622 2625
183 2625..2627 2620 2630 2634 2636 2639 2641 2643 2646 2648
184 2648/ 2651 2653 2655 2658 2660 2662 2665 2667 2669 2672
185 L 367% 2674 2676 2679 2681 2683 2686 2688 2690 2693 2695
186 {9695 2607 700 BYOR 2704 2TOY 2709 2711 2714 2716 2718
37 \Ya713 2721 aypd 2725 2728 2730 2732 2735 2737 2138 2742
1}@ W/ u4n 0744 2746 2745 2751 2753 7SS 275 2760 2762 2765
Kads  oves ovey 2vew 2972 7T 29VE 2iTR a7E] 2783 2785 2788

2N2.90 go7ss 2700 2792 2794 2797 2799 2801 2804 2806 2808 2810
N\ UGl zs10 2813 2815 2817 2819 2822 2824 2326 2826 2831 2613
N\ Toz 2833 zsis 2038 2840 2847 D844 2847 2849 2851 2853 2836
\ / Lo3 2856 2858 2860 2862 2865 2367 2860 2371 2874 2876 2578
194 2878 2880 2887 2685 2887 2889 2591 2894 2606 2298 2900
L95  2o0p 2903 2005 2607 2000 2011 291¢ 1916 2918 2920 2923

3 5 29 2031 2934 2936 2038 2940 2942 2MS
156 2623 2023 2927 29 T e 2067

960
1.97 7945 2947 2043 2951 2953 2956 2958 2
1.98 2067 2069 2971 2973 2975 2978 2950 2942 2984 233: 2:::
159 2080 2991 2993 2995 2957 2999 3002 3004 3006 3

?



330 APPENDIX 2

TABLE XI
LogariTaMs To TnE Base 10

Theee twa poges give the eomnon Togarickma of numbere between 1 and 10, correet to four ploma,
Movipg the decimal poitt n places o the right (or left) In 1he number i3 equivelent to addiog n {or
— 1) to the leneftho,  Thus, log 0017453 = 02418 — B |= 2.2418],

To faclitete interpolation, the (enthe of the tabular difficrences are given at the end of each line,
mo that the differences themselves noed Gt be considered, In ueing theee aide, first tind the nenrest
tabmlar entry, and theo ald (to move to the cight) or sulitract {1o move to the delt), as e vuse may

regquire.

Tenths of the
Tabular Differepss N\

o 1 2 38 4 5 6 % 8 9 10 1z345

1.0 ooo00 0043 0036 OL28 0170 0212 0253 0204 0334 0374 0414 ,'\\\
11 0414 0453 (492 0331 0569 0607 0645 G6BZ 0719 0735 (Vo2 N é
12 0792 0323 (0364 (399 0934 0469 1004 1038 1072 1106 1139 \

13 1139 1173 1206 123% 1271 1303 1335 1367 1399 1430 1461 ';Tné\'uid Interpo-

14 1461 1482 1523 1553 1584 1614 1644 1673 1703 1732 176 Hation In lhe first
o ten lings, ue the

15 1761 1790 151§ 1247 1875 1903 1931 1939 1987 2014 204D sparial lable onthe
1.5 2041 2068 2095 2122 2148 21¥5 2201 2227 2233 22?9..‘\9‘31]4 preceding page.
17 2304 2330 2355 2380 2405 2430 2455 2480 2504 2529 J2553

1.8 2353 2877 2601 2625 2648 2872 2693 2713 2742 JWES 2788

L% 2788 2810 2833 2856 ZEVE 2900 2023 2043 29’67\2'939 3010

240 03010 3032 3054 3075 3096 3118 3139 3160 o3’1§‘l 3201 3222 6 811
21 3222 3243 3263 3284 3304 3324 3345 3365\&335 3404 3424 6 110
22 3424 3444 3464 3483 3502 3522 3541 85603579 3508 3617 & 10

2.3 3617 3636 3655 3674 3692 3IN1 3729:3"7‘-17 3766 37B4 3802
24 3802 3820 3838 3856 3874 3892 3600 ,1927 3543 3662 3979

2.5 3979 3997 4014 4031 4048 4065 CMOEZ 4099 4116 4133 4150
26 4150 4166 4183 4200 4216  42320°M249 4265 4281 4298 4314
27 4314 4330 4346 3@ wiwred buapli biwrasasrgrin 4456 4472
2.8 4472 44B7 4502 4518 4533 “MEAR 4564 4579 4594 4609 4624
2.9 4624 4630 4554 4660 46ERN 4698 4713 4728 4742 4757 47Nl

30 04771 4736 4800 48144829 4843 4857 4871 488€ 4300 4914
31 4914 4928 49424358 4060 4983 4097 5011 5024 5038 5051
32 5051 $065 SO79UG08Z 5105 5118 §132 5145 §159 172 5185
33 58S 5198 5211 5224 5237 5250 S263 52Y6 5280 5302 5315
34 5315 5328 534005353 5366 5378 5391 5403 5416 5428 544l

a5 5441 3A5IGA6I 5478 5490 5502 5514 5327 5530 E5S1 5563
3.6 5563 ’535?5’ 53E7 5599 5611 5623 5635 5647 5638 5670 5682
3.7 5652~.§6§4 5705 5717 5729  5¥40 5752 5VA3 5V7F 5¥36 5795
3.3 SYHB\“E%00 5321 5332 5843 5855 5866 SAT7 5888 5899 5911
39 ¥ 5922 5033 5944 5955 5966 SBRV 598R 5999 6010 6021

4.0 06071 6031 6042 6053 6064 6075 605 6096 6107 G117 6123

4f 6138 6133 6149 6160 6170  GlEQ 6191 G201 6212 6222 6232
{2 62327 6243 6253 6263 6274 6284 6294 6304 B3l4 6323 6335
NG 6335 6345 6355 6365 BITS 6335 6395 6405 6415 6425 6435
\ ’ 44 6435 6444 6454 6464 6474 6484 6493 €503 6513 6532 6532

4.5 6532 6342 6351 6361 BSTI 6530 659D 6599 60T GELE 642E
4.6 6628 6037 GbAG 665G 666N 66TS  GOB4 BE93 BYDZ GY1Z GY2L
4.7 GF21 6730 &730 6740 AYSR  6V6T7 6776 G7ES 6794 AA03  6R12
4.9 6812 6821 6830 G839 6848 GBST  GAEG GATS 6884 65Y3 6902
4.9 G902 6911 6920 9B 0937 £046 6955 6964 G9T2 623l 6990

L s
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TABLES

TABLE XI

LocAritaus To THE Base 10

0 Tt 2 3 4
5.0 06990 6998 YOOT TOIS 7024
51 7076 7OR4 JOO3 TiOL T1I0
52 7166 7168 JIFY 7185 7193
53 7243 7251 7259 7267 7275
5.4 7324 F332 7340 7348 756
55 7404 T4IZ 7419 T427 7435
5.6 T4 7490 7487 7505 7513
5.7 7359 7566 7574 7582 758%
5.8 7634 7642 7549 7657 V664
58 7709 7716 T3 Y931 7738
G.0 o.7782 7739 VY96 YROI 7810
6.1 7853 7860 7868 7AT5 7382
6.2 7924 7931 7935 TH45 7052
63 7993 3000 8007 3014 8021
6.4  B062 8069 8075 3037 8089
6.5 5129  §136 8142 5149 156
66  B195 8202 8209 8215 8222
67 8261 B26Y 8274 3230 5287
6.8 %25 8331 8338 8344 8351
69  B3E8 8395 £401 B40T 8414
T.0 0.8451 3457 8463 §470 8476
7.1 8513 8519 &525 8531 8537
¥2 8573  B57D B585 8591 8597
7.3 8633 8639 B645 2651 BEST
74 8662 8698 B704 B7LO 87L6
7.5 RTIL  B756 8762 768 8774
7.6 BSOS 8314 BR20 K825 BR3L
7.7 8865  BET1 8376 BB 8BEF
7.8  B92L 8927 BRIZ 5933 8545
79 5976 8983 3987 §993"a99%
8.0 05031 5036 5042580475053
81 9055 0090 9096 9101 9106
82 9138 9143 9{4H, 5154 9159
83 o191 039q 9207 5205 9212
84 9243 g2wgle2i3 9253 9263
8.5 9204 £76290 9304 0309 H315
3.6 a3, (4350 9355 9360 9365
2.7 ‘9@5' 9400 9405 9410 9415
8.8 {0485 9450 9455 9460 9465
5.9, V0494 9499 5504 9509 9513
A0S 005492 9547 9352 9557 9562
ANN9L 9590 9595 9600 9605 DGOS
\ } 02 9638 9643 9647 9652 9657
93 0GA5 9639 9694 DEDY S703
94  §731 0736 9741 9745 9750
95 977y 9782 5786 9791 0795
95 5323 0827 9832 9836 9341
9.7 9368 D872 DEFY 9881 9B&6
98 991z 9917 9521 9926 9930
9.9 9956 9961 9965 9969 9474

5
7033
7113
7202
7284
7364

7443
7520
7397
672
7745
7818
7EE9
7859
8028
80496
8162
3228
8293
B3SY
8420

8482
8543
3603
8663

6

To42
7126
7210
7292
7372

7451
7528
7604
7574
7752
7825
789
7966
8035
102
B16%
8235
B29%
8363
8426
2488

8609

8hss)

372246727

AR T SR

&893
8949
9004

9058
o2
9165
9217
9269

9320
9370
0420
469
9518

9566
9614
9661
9708
9754

G800
9845
9850
9934
9978

8899
3954
9009

9063
0117
9170
9222
9274

9325
9375
9425
9474
9523

9571
961%
9666
9713
o759

9803
8850
9894
993%
9983

7

8

9

705G 7039 7067
7135 7143 71s2
7213 7226 7235
7300 F30B Vil6
7380 7338 7396

7450 7460 7474
7536 7543 7551
7612 7619 727
7686 7694 701
7760 7767 TII4
7832 7839 846
75903 7910 7917
TUT3 7O80 T9RT
8041 8048 BOSS
8109 8116 8132

8176 8182 818N 819
§241 5248 8254
8306 83128319
8370 3 £2
3432 €438/8445

844 8500 8506
8549 $33576561 8567
Bels 8621 8627
8675 8681 8686
8733 8739 745

B4
8960
o015
9069
13z
9175
9227
9279

9330
9330
9430
9479
9328
9376
9624
9671
o717
763

9800
9854
0a%
9343
9987

8910
£965
9020
o674
9128
9180
9232
q384

9335
5385
9435
9434

9533

9581
9B28
9675
G725
9ThR

9814
9859
5903
9948
9591

g915
8971
9025

079
9133
0186
9238
9269

4340
9390
9440
G439
9538

9586
9633
9680
9727
9773

9818
9863
9908
9952
9996

10

7076
7180
7243
7324
7404

7482
7359
7634
A
7782
7853
7924
7993
80627

]

1

A pr b b b B bt b pe e e

N &

sipal/1

8261
8325
8338
8451

8512
8573
8633
8652
8751

8921
BAY6
8031

o035
138
8191
9243
9294
9345
9355
0445
494
9542
9590
9638
0685
8731
9777
9823
4863
5012
9956

1
1
1
1
1
1
1
1
1
1

i

CDDDO DOQOD DD DR e R R e e e e e

Tenth
Tabaulay

i bt b b bl e b e b e b e b3 B B3 B B BT B3 B3 B D3 B3 B3 DO R B B BY BD B3 B T3 B3 b3 B3 BIGRIARL BD D B B2 B3 BY 13 B3 Lo Lo Q)

=,
g

MR R ME MR ML bR AR M0 R R b B bR A 83 L b 0t b G e L WAL Bt bt W G b

H
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332 APTENDIX 2

TABLE XI1

Squars Roots oF NUMBERS

957 1.060 1962  1.965 1.967 1.070 1.072
882 1985  LURT 1990 1.992 1.608 1.097 |

1049 1952 1.95
Lo75  1.977 198
2.000 2002 20905 2007 2010 2012 2015 2017 2020 2022

2025 2.087\2030 2.032 20035 2037 2040 2.042 2.045 2047 | 2

1903 12
1924 1.926 1,923\%\.931 1934 1936 1039 1.042

™

2.049 ZMOE27 2,054 2057 2.069 2.062 2064 2066 2.069 2.071 .
2.074 L2076 2,078 2081 2.083 2.086 2088 2.090 2083 2.005
2.008 \"2:100 2.102 2,105 2,107 2110 2,112 2,114 2117 2.119:

N| o 1 2z & 4 5 & 7 8 s |BE
1.0 [1.000 1005 1010 1015 1020 1025 1030 1.03+ 1.030 1044 5
1|1040 1054 1053 1063 1068 1072  LOT7 1.OX2 1.086 109l
21095 1100 1105 1109 1114 118 1122 1127 1131 1036 | 4
31140 1145 1149 1153 1158 1162 U166 1170 1175 1179
41283 187 1192 1106 1200 1202 1208 l2lz 1217 1221
151,225 1220 1288 1237 1241 1245 1240 1253 1957 198l
6 | 1.265 1269 1,273 1.277 1.281 1.285 L2385 1.202 1.206 1L&00)
7| 1.304 1308 1.311 1.215 1.31% 1.323 Li27 1380 134 L L0588
8| 1342 1345 1349 1353 1356 1360 1364 1307 19710975
9 | 1378 1382 1336 1380 1393 1396 L1400 1.404 1407 Y1411

20 | 1414 1418 1421 1425 1428 1432 1435 1430 (Tded Ladp
1| 1449 1453 1456 1450 1463 1460 1470 1.4780.0.476 1430 3
2| 1483 1487 1490 1403 1497 1500 1303 1§0Z)1.510 1513
3 | 1.617 1.620 1.523 1.526 1.530 1.533 1.B3GA%38 1.543 1.546
4| 1549 1552 1556 1550 1562 1565  LO6§\Ma72 1.575 1578

2.5 | 1681 1584 1.587 1501 1504 1507  1800° 1603 1.606 1.600
61612 1616 1619 1622 1625 1628 AM31 1634 1.637 1.640
71643 1646 1640 1652 1655 1658 . I661 10664 1.667 1670
8 | 1.673 LA76 1.679 1.682 1.655 LO6BREC 3 1.681 L6944 1.697 L1700
9 |1708 1706 1709 1712 1715  L7a8y¥ 1720 1723 1.726 1.729
8001732 1735 1738 1741 1744 WN§AE 1749 1752 L7553 LTS
1]L761 1784 1766 L7068 1772 SN775 1778 1780 1783 174
21780 1792 1794 L797 18008 1803 1506 1508 1811 1514
3| 1.817 1.819 1822 H4R2%s dsgduli b orglissgs  1.836 1.83%5 1.841
4| 1844 1247 1849 1852 1835 18 1860 1.863 1.865 1.868

85 | 1671 1873 1876 LSZONDISR1 1854 1887 1.889 1.892 1.895
6187 1900 1903 1805 100 1910 1913 1.916 1.018 Lozl
7 1944 1017
8
9
0
1
2
3
4
5

2.121‘\ 2,124 2,126 2,128 2.1

4 131 2133 2135 2.13§ 2.140 2.142
6| 2045 2147 2,149 2152 2154 2156 2159 2161 2.163 2 166
7 |¢AI88 2170 2173 2175 2177 2179 2183 2184 201806 2.180
ANN2AGL 2193 2195 2,188 2200 2302 2206 2207 2200 2211
N8 2214 2216 2.218 2320 2223 2920 2227 2229 2232 2.934

+F = 177245+ 1/4/7 = (.56419 7/2 = 1.25331 e = 164872

Explanation of Table of Square Roots

This table gives the values of 4/ lor values of & from 1 to 100, corrert to four figiures.
(Iutorpolated values muay be in error by 1 in the fuurth fignre.)

_To find the square root of a number N outside the tange from 1 to 100, divide the
digits of the number into blocks of two (beginning with the decimal point), and note
that moving the derimal point two pluces i N ia equivalent to moving it one place in
the square root of . For example:

V2718 = L648; /2718 = 16.48; 0002718 = 0.01648;
VZ7.18 = 5.218; ~/Z718 = B2.1%; +/0.009718 = 0.05213.
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TABLE XiI

Bquarke Roors

N oo i 02z 3 4 5 6 7 8 ¢ |¥=
9.0 | 2.2306 2238 2241 2243 2.245 2.247 2249 2252 2,254 2256
1| 2258 2.261 2268 2.265 2.267 2.269 2.272 2274 2274 2:278 2
2| 2280 2293 2.285 2.287 2289 2201 2203 2.296 2208 2300
32302 2304 2307 2300 2811 2313 2315 2317 2319 2322
4| 2824 2326 2328 2330 2.332 2335 2337 2330 2341 2343
5.5 2345 2847 2349 2352 2354 2356 2358 2.360 2362 2364 | N\

2306 2,360 2.371 2373 2,375 2.377 2379 2.381 2,383 2388

2.387 2,300 2.302 2.394 2.306 2.398 2400 2402 2404 2,406\
2.408 2410 2412 2415 2417 2419 2491 2423 2425 2.49%))
2.429 2431 2433 24350 2.437 2,439 2441 2‘443 2445 247

6.0 | 2410 2452 2454 2456 2458 2460 2462 2404 2468 2.468
2470 2472 2474 2476 2478 2480 2482 2484 286 2.488
2,400 2,402 2434 2496 2488 2,500 2502 2.504 D506 2.508
2510  2.512 2.514 2515 2.518 2520 2522 2.524 ‘9626 2.528
2330 2532 2.534 2.536 2538 2540  2.542.2544° 2.540 2.548

65| 2550  2.551 2583 2555 2557  2.559  L.561\2.363 2.565 2.567
25060 2571 2573 2675 2477 2.579 258%/ 2.585 2.585 2.687
2538 2.500 2502 2504 2598 2508 42 2602 2604 2.408
DB0% 2610 2612 2613 2.615 26172619 2821 2623 2625
2627 2.620 2631 2632 2634 2088\J2.038 2.040 2642 2644

7.0 | 2.646  2.048 2650 2.651 26563 20557 2.657 2850 2661 2.663
5BG5 2666 Z.568 2670 2672 ~2674  2.676 2.678 2.630 2.681
o688 2.685 2687 2689 2.691 o\ 2603  2.0664 ggglag 3'??? %‘%‘1’2
2702 2704 2706 2.707 2.70€ 7L )

P 2720 2722 2.724 2,726 2728“’“"2(#%67‘6‘15.;ﬂwmg9n35 2.737

2.739 2.740 2742 2744 2746 2.748 2750 2.761 2753 2.756
2.767 2750 2.760 2702 “2.704 2.766 2,768 2.769 2771 2.773
2,575 2977 2 778 TSO 2782 2.784 2.786 2.787 2.785 2.701
2793 2,705 7‘1]6\‘% 2.800 2.802 2804 2.805 2.807 2.809
2811 2.812 2814 \2.816 2.818 2,820 2.821 2,823 2,825 2.827

2.828 2.830 ¢ 28‘82 2.834 2835 2,837 2330 2.841 2.843 2,844

mealmEm RO CXADO RKRE-~D ©E-IS

8.0
1| 2.846 2.848 N2/850 2.851 2.853 2850 2.857 2.358 2.800 2.862
2| 2,864 2 8R5 02867 2.860 2.871 2.872 2874 2.876 2.877 2.870
3| 2,881 JRNS 2884 24530 2.888 2.890 2801 2.803 2.895 2.897
4 | 2808 A_‘.)OO 2002 2803 2.905 2,907 2909 2010 2912 2.014
8.5 | 2016 N 2.017 2019 2921 2022 2.924 209268 2.927 2.926 2.931
8 29)%5 2.931 2936 2.933 2.030 2.941 2.943 2.044 2,046 2.948
T pub 2951 2053 2.055 2956 2,958 2060 2061 2963 2,965
A8 N2I066 2968 2070 2.972 2973 2975 2977 2.978 2080 2.082
(0 2083 3085 2937 2988 2.800 2.992 2003 2,095 2.997 2.088
8.0 | 5. 002 3,003 3.005 &.007 3.005 3010 3.012 3.013 .:.’»015
1 38?3 %3?8 3.020 5022 3.023 3.025 3.027 3.028 3.030 3.032
21 3.033 2.035 3.086 3.038 3.040 3.041 3.043 3.045 3.040 3.048
3| 3.050 3.051 3.053 3.055 3.056 3.058 .3‘059 3.0681 3.063 3.[}64]%
4 | 3.066 2.068 3.089 3.071 3.072 3.074 3.076 3.077 3.079 3.08
. RLLY 084 3.085 3.087 3.088 3.000 3.002 3.094 3.005 3.097
? E iggg g.lﬂg 3102 3.103 3.105 ~ 3.108 3.108 3.110 3.111 3.%3
73114 3118 3.113 3.119 3.121 3.122 3.124 ?.125 3.127 3.149
&1 3.130 3132 2134 3135 3.137 3.138 53.140 3.142 3,143 .16?
9| 3.148 3148 3,150 3151 3.153 3.15¢ 3.156 3.158 3.159 3.

Moving the ;iecima,l point TWO places in N requires moving it ONE place in body

of table.
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TABLE XII

Square Roors

-Tes
N (] 1 2 3 4 5 7 8 9 ;%
10. | 3.162  3.178 3,194 3,209 3,225  3.240  3.256 3.271 4.28%6 3.302 | 15
1. | 3.317  3.332 3547 5862 3876 3391 3406 3,421 3.435 3.450 | 15
2. | 3464 3479 3403 32507 3.521 3436 3550 3.564 3.578 3.502 | 14
3. | 3606  3.619 3.633 3.647 3.661 2674  3.688 3.701 3.715 5.72%
4. | 3742  3.755 3.768 3782 3705 5808 3821 3.834 3.847 3860 | 13
15. | 3.873  3.836 3.899 3.912 3.924  3.937 2050 3.962 3.975 3087\
6. | 4.000 4012 4025 4.037 4060 4062 4074 4087 4.000 41N 12
7.| 4123 4135 4,147 4150 4171 4183 4105 4.207 4.210 4251
S, | 4243 4254 4266 4.27% 4200 4301 4.313 4.324 4336 4347
0, | 4350  4.370 4.382 4.303 4405 4416 4427 4438 4.460\24G1 | 11
N
20, | 4472 4483 4404 4506 4517 4528 4.530 4.550.4.561 4.572
1. | 4,583 4508 4604 4615 4636 4037  4.848 4658 1660 4.680 -
2| 4690 4701 4712 4.722 4733 4743 4751 4.708°4.775 4.783
3. | 4796  4.806 4817 4.827 4.837 4848 4858 Agtss 4.579 4589 | 10
4. 4899 4909 4919 4030 4940 4950  4.960{BITC 4.080 4.990
25. | 5.000 5010 5020 5030 5040 5050 D60 5.070 5.079 5.089
6.| 5000 5109 5119 5128 5138 5148 5N88 5167 5.177 5.187
7.0 5.106  5.206 5215 5225 5235 5244 »°(5954¢ 5263 5273 5.287
8. | 5.202 5301 5310 5.320 5320 5330\ 5.34% 5.357 5.307 5376 | U
9. | 5385 5304 5404 5413 5.422 5431,* 5441 5450 5.459 5.46%
30. | 5477  5.486 5495 5.505 &.514 5523 6532 5541 3550 3.559
1. | 5568 5577 5.586 5.505 5604  DBA12 5621 5630 5639 5645
2. | 5857 5666 5.675 5083 5692~ Y5701 4710 5.718 5.727 5.736
3. | 6745 5753 5762 5771 579N, 5.788% 5797 5.805 5.814 5K |
4 | 5831 5840 5348 g‘%ﬁ“"bf'@m OTglRa 5891 5806 5008 | §
35, | 5016 5925 5.933 5,941 5950 5968 B.O67 5975 5.983 5ouz
6. | 6.00B 6008 GOLT 6.6 6053 6042 6030 6.058 6.066 6075
7. 6083 6.091 6099 HIT K.116 6124 6132 6.140 6.148 6.156
8. | 6.16¢  A.173 6. 1?3}\6189 6.197  6.205 6213 6.221 6.229 8237
0. | 6245  6.253 26N 62060 6277  B.285 6.203 6.301 6.309 6317
40. | 6.825  6.332.0:340 0,348 6.356 6,364  6.372 6.380 £.3%7 6.305
1. | 6403  64INHA19 6427 6434 G442 H450 6.458 6.465 6.473
3. | 6431 643876490 6504 6.512 6519 £.527 6.535 6.542 B.550
3. 8457  #BDS 6.573 6.580 5,588 G395  6.603 6.611 6.618 6.626
4. | 6,633 \5641 6.648 6.656 6863  6.671 6,678 6.886 B.603 6.701
45, 5.7[{23\ T6.716 0.723 6731 6.733 6745 6753 6.760 6708 6.775
6. | 6.78 6.790 6.797 6.804 6812  6.81%  6.826 6.834 6841 6.84%8
7. | 6856  6.863 A.870 6877 6.885 6802 6800 6.907 6.914 6921
B.'6928 6935 6.043 6.950 6957  6.964 6571 6.979 6.986 6.993 |
ONI000 7007 7.014 7021 7.020 0 7038 0 7.043 7.050 7.057 7.064 |
\ y i
Squane Roors or CeErTaAN FrACTIONS
N| &N N N | §¥| +F N| V% | ¥ | v | ¥ | V&
WOl 7071 | 35 | OTT46 & ¢ | 07539 | W | 0.3883 | 5iz | 0.6455 | 34s | 0.7500
L 06T74 | 56 | 08044 | 35 | 08452 | 26 | 0.4714 | 742 | 0.7638 1ne | 0.8202
3 | 0.8165 | 14 | 04082 | 9% | 00958 | 4% | 0.6667 |13z | 0.9574 |13c | 0.9014
30| 05000 | % 3 0.8129 | 15 | 0.3536 | 36 | 0.7d54 | s | 0.2500 |354s | 0.0682
3| 0.8660 | ¥ | 03780 | 3% | 0.6124 | 74 | 0.3810 | 3{s | 0.4330 | sz | 0.1768
¥ | 04472 | 3¢ | 05345 | 36 | O.7906 | & | 0.9428 | 3{s | 0.6500 | 1ge | 0.1250
3¢ | 0.6325 | 3 06547| | 09354 | 2! 0.2887 ] 94e | 0.6614 | 14e | 0.1414
| |
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TABLE XII
Bquare Roots
N| o i 2 3 4 B & 7 8 8 ;‘g
50,1 7.071 7078 7.085 7.092 7.000 706 7113 720 7.27 T.A34| 7
1. 7141  7.148 7.155 7.162 7.1690  7.176  7.183 7.180 7.197 7.204
2| 7211 7218 7.225 7232 7.230 7248  7.253 T.250 7.266 7.273
3| 7280 7287 7.204 7.2301 7308  7.314  7.321 7.328 7.335 7.342
1| 7348 7355 T.362 7.369 7.376  7.382  7.3%9 7.306 7.403 7.400
56. | 7.416  7.423 7430 7436 T.443 7450 7457 7463 7470 T4T7 |
6| 7483 7400 7407 7503 T.510 7.517  7.523 7.530 7.537 7.583 1\
7.| 7550  7.556 7.563 7570 7570  7.583  7.580 7.508 7.803 7.509
5| 7616 7422 7.029 7.635 7642  7.640  7.655 7.662 7.668 7.075
0.0 7681  7.688 7.004 7701 7707  T.T14 7920 T727 7733 AIOY 6
"N\
B0, | 7.746 7752 7750 7765 772 7978 7785 7991 7.99T\F.804
1| 7810  7R17 75823 7.820 7836  7.842  7.349 7.855 T.881° 7.868
9| 7874 7880 TARY 7.893 7809 7906  7.012 7918 %975 7.931
3| 7937 7944 7050 7056 7.002  7.969  7.9T5 TOR1/ G087 7.994
4 | 8000 S.006 8012 5019 8025 8031 8037 8044V8.050 8.056
65. | 8.062 8068 8075 8081 8087 8093  S0JMNMOG 8112 8.118
5| 2124  §130 8136 8142 8149 8155  BELNS.167 8173 8.179
7| 8185 8191 8198 8208 8210 8216 M2wE 5228 B3 £.240
% |$240 8252 825 8204 8270 8276 { &783 5250 £.290 8.301
o | 8307 8313 8410 S.325 $331  8.337\\8.343 5340 8355 8.301
70| 8307 8373 8370 8385 5.390 889 8402 8408 8414 8.420
U Siv6  Ga%> 9438 8444 S430 (BASC 8462 8468 B.ATH 8470
3 | $a%5 401 8407 S.503 5500 c\B515 8521 8.526 £.532 B.538
| %544 5550 8536 S.562 850%Y 8573 8579 8508 g.ggé £.597
4. | 8602  8.608 3.614 8.620 szqzoqﬂw@:g?gmﬁgggw-_m.g_lh .
3 5 8.712
75 | 5660  £.660 8.672 S.078 SB82 8689 8695 8701 8708
213008 8724 8720 4785 Ne7al  R7a6 8752 8758 &704 870D
7 2975 s781 8786 Sger 8793 8803  8.800 8815 385 Gogy
& | 5852 sa3r ssas B4 sms4 8860 8860 8871 ASIT Gl
o.|Ss¥8  8EU4 8EP\S.005 8911 8SI6 8022 8927 5933 8.
) %3 8.989 8.904
| 8044 s.o50 8955 so6l 8967 8972 8678 B
TG REPR el mm o G Nlae 1
2. 9055 90610066 9. . 03 . e o000 ol
BN W& o191 0127 9.132 9138 6.143 9149 9. ]
; 3%2 .;3.\?1 0176 0182 0187  9.192 0198 9.203 9309 9.214
\J 5 9.263 9.208
a0\ 9205 9230 0230 9.241  9.247  9.232 8.257
5| SFa a3% o954 9390 9005 9301  0.00 9311 031 9.322
7o G827 0.433 9,335;1 g.ggg 3.233 gig; g-i{g 3'41'3 94b3 042
SO 356 9.301 9397 9. 9. A3 B :
;i ) ¥ch e ids 9450 0455  9.460  0.466 047 9.476 9.482
4 534
w6, | 0457  9.407 9407 0.503 9508  9.513 9518 .57 9.579 9534
S | oA §is o550 0.585 0.560 9566 9571 SIS fean §%as
2| 9382 9b07 .002 BE07 0.612 2,018 2628 320 Goss 8.0
B 90d 0088 B8 BT D7l Ozl 9726 9731 8T 9.74
) : 78 9.783 0.788 9.793
95. | 0.747  9.752 0.757 9.762 0,767 g.ggg 3-;;3 g‘ggni 583 o4l
o | 9708  osva osos o813 RS 982 BB S Ssg o804
7|95 885 56 Dos 9860 oes 9030 0035 0940 0.945
5. | 5050 D908 0960 0.965 0.070 _9.975 0080 0.98% 9.990 9.

7 o5 ¢ = 1.p4872
AT = 1772454 L//T = 0.56419 72 = 1.25331 Vie=18

—_——— . 5 Tngi ' Handboolk, published
N ] . isuion, from Marks Mechanival Engineers 1d ¢ Table of
bvN\O-I p&;rﬂ_ﬁ?ﬁbﬁ"a‘:ﬁ’%ﬁ?‘%‘hﬁm} sﬁ;ﬁ;ﬁ)&t was reproduced directly from Pierce's 4 Shor
Tutegrats, published by Girn & Co., with permission.
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TABLE XIII
TRIGONOMETRIC FUNCIIONS

Radians | Degrees | Sines Cosines | Tanpents /Cotangents

.0000 0 L0000 | 1.0000 0000 ot 90 1.5708
L0175 1 L0173 .9998 0175 | 57.29 89 I. 5533
.0349 2 .0349 L0904 0349 | 28.64 88 1.5359
.0524 3 L0523 L9986 0524 | 19.08 87 1.5184
.069% 4 .DBOS .9976 0699 14.30 86 1.5000
0873 5 | 0872 | 0962 | 0875 | 11.430 | 85 | f.deds
.1047 6 . 1045 .9945 L1051 9.514 84 al.J661
1222 7 .1219 .5025 .1228 8.144 | 85 L Nadse
.1396 8 .1302 .5003 .1405 7.115 82N V4312
.1571 9 .1564 .9877 1584 6.314 8i\J | 1.4137
.1745 10 1736 .5843 L1763 5.671 | 8o 1.3963
1920 11 .1908 L0816 1044 5.145 /NN 70 1.3788
.2094 12 L2079 L9781 .2136 4.705\ 1 78 1.53614
. 2269 13 .2250 L9744 .2300 4:382) 77 1.3439
.2443 14 .2419 L9703 .2403 011 76 1.3265
.2618 15 L2588 0659 2679|3732 75 1.3090
.2703 16 L2756 L0613 2867 {3 487 74 1.2915
. 2067 17 .2024 .5563 3057\ 3.271 73 1.2741
.3142 18 . 3000 L9511 . 322G 3.078 72 1.2566
.33186 19 .3256 455 | L33 2.004 71 1.2302
.3491 20 .3420 .9397 \ 3640 2.748 70 19217
.3665 21 .3584 L9336.5% 3830 | 2.605 69 i.2043
.3840 22 L B746 W, @mzawhbl MMPTE-IN2 475 63 1.1868
.4014 23 .3507 9205 .4245 2356 67 1.1694
L4189 24 A067 | {9135 .4452 2.246 &6 L.1519
43 | 25 | s Vo063 | 4663 | 2144 | 65 | 1.1345
L4538 26 . ™ 8088 L4877 2,050 64 1.1170
.4712 27 ) 4540 L8010 . 5005 1.963 63 1.0996
L4887 28 . 4695 .8820 L6317 1.881 62 1.0821
.5061 20 | (%48 L8746 .5543 1,804 61 1.0647
.5236 30 4.7 5000 L8660 5774 1,732 60 1.0472
L5411 3O 5150 872 .6009 1.664 59 1.0297
.5585 82} .5200 L8480 L6249 1.600 58 1.0123
.5760 §s3 .5446 .8387 .6404 1.540 57 . 0.9048
5034 4§\ 34 5502 .8280 6745 1.483 56 0.9774
619N 35 5736 .8192 L7002 1.428 55 | 0.9590
/6283 36 L5878 L8000 L7265 1.376 54 | 0.9425
458 37 G018 L7986 .7536 1.327 53 | 0.9250
L6632 38 .B157 . 78R0 L7813 1.280 52 0.9076
.6807 39 L6203 7771 .8098 1.235 51 0. 5901
.6981 40 L6428 7660 .8301 1.192 50 | 0.8727
.7158 41 6561 7547 L8693 1.150 49 0. 8552
.7330 42 .69 L7431 .9004 .11z 48 0.8378
.7505 43 .6820 7314 0395 1,072 a7 0.8203
L7679 44 (6947 .7193 65T 1.036 46 0.8029
7854 45 7071 071 ] 1.0000 1.000 45 | 0.7854
Cosines | Sines {Cotangents Tangents | Degrees | Radians
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2. Graphieal and Tabular Diffcrentiation and Integration.

3. Fourier SBeries Analysis. R\

4, Normal Frequency Distribution and Precision Indexes. O

5. Adjustment of Conditioned Data. N

6. Least Squares Equations. 4

7. Correlation. "’\
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Abbot, C. G, 28
Adjusted messurements, 216
probable errors of, 228
Adjust-g]leglt of conditioned measurements,

normal eguations for, 217
of alomic physics constants, 230
of nonlinearly reiated quantities, 222
short method of, 226
Arbitrary constants, evaluation of, ses Eval-
uating arbitrary constanis
probable errora of, 79, 249
Areag, determination of, see Integration
Arithmetic means, Inconsistent sets of, 197
reasons for, 200
teats for, 198
grand mean of, 199
of equally weighted measurements, 146,
152, 161
short. method of computing, 168
of uneyually weighted measurements, 189
short method of computing, 194
A S T.M., 13
Altomic physica, constants of, 230
Average deviation, 157; see elso Precision$
indexes W
Average ordinate method of integration ,1()&3{
Averages method of finding equations, 720

Baily, J. L., 252, 337 N
Bearden, J. A., 203 ¢ )
Beattie, James A., 203, 245\3} )

Rirge, I, T., 177, 186, 211, 282, 250, 252,
Birge-l'}c;nd diagram 4

, 234 .
Blanch, G. J., 96 AN
Rlanchard, J4., 524N/

Bleakney, W., 13&
Bodenstein, MMaxy 215
Bond, W. a2, 337

Brunt, Dag}, 337
Burgess, %4 0., 40
Byorp W, 1o, 112

P,
Gamphbell, N., 73
Chaivenet's eritetion, 170
Chi-squsre lest, 177, 182
Chubb, L. W, 134

hurmonie analyzer, 134
Clarke, I'. W, 35
Cocfivient of alienation, 274, 279 .
Coefficient of correlation, see Correlation

cocificient

Coeflicient of determination, 274
Coefficient of multiple correlation, 287
Coefficient. of partial correlation, 258
Cohen, P., 34
Colurnn headings, 5, 14
Colunins in tables, &

.

Conditioned meamirements, adjustment of,
see Adjustment of eonditioned meas-
urements

Condon, E. T., 252, 337

Consistency of a set of neans, see Arithmetic\
means, inconsistent sets of

Constants, evaluation of, see Eval
bitrury constants

of atamic physics, 230 N\
probable errors of, 79, 249
Cnordinate seales, choice ofpdl
labeling of, 47 A\ 3
Corcoran, G. F., 108, 124)
Correlation, 270 _ L™
and frequeney distgibution, 274
index of, 2
multipte, 287\
nonlinese)
partial 288
Correlution. coeffigient, 273
angdh regression lines, 284
and the zfunction, 281
o 3ot grouperd dsta, 276
o for multiple correlation, 287
\ "for partial correlation, 288

anhical method for computing, 285

o SRR S o et

physical interpretation of, 278

precision indexzes of, 281

rvelinhility of, 281
Cox, G. C., 252, 337
Crumpler, T. B., 337 .
Cut-snd-weigh method of integration, 103

Darwin, C. G., 232, 337
Deming. W. E., 197, 198, 337, 338
Determinants, 309
evaluation of, 310
obtaining equstions of curves by, 313
simplification of, 312
solution of simultanec
i

t\
';]8\ }l’lg ar-

us eguations by,

09

Differences, tabular, 7, 16
Differentiation, 85

graphical methods of, 87

mechanical devices for, 89, 91

tabulsr methods of, 52 o
Distributions, #ee Frequency diatributions
Trabaois, E. I°., 47
Dubond, J. W. M., 232, 338
Dunnington, F. G., 204, 232, 338

mpirical equationa, 56
E posing a suitable form for, 56
tegting the suitability of, 58
Equation method of mtcrpo‘latu‘)n_, 15
Equaticns, empirical, see Empirical
tions
least-squares, §68
normal, 21

equa-

Least-squares equations

Compton, A. H,, 176
Comstock, G. C., 337

rational, 56
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Equations, representation of data by, 56
Xrrors, accidental, 152
elementary, 149
normal law of, see Normal frequency dis-
tribution
systematic, 152
Evalyating arbitrary constanta, 64
least-squarea method, 64, 77, 238
method of aversgos, 72
method of moments, 75
svlected-points met.hod, 6%, 77
Bt mght—Fnc graph method, 64, 65
aneccessive approxitnation method, 76
#oro sum method, 73
Ewang, 13, [., C,, 91
HBzperiments, planning of, 212
Extrapolation, 24

Tederal Works Agency, 338

Fisher, R, A., 281, 338
z-Tunction, 281

Flatness, 182

Forgeng, Ww. D,

Voraythe, W. F. - 27 bh, 83

Fourier peries, 107
apprmumate(l by a finite series, 141
coefficients of, 113, 115, 119
CcOnVergence of 112
evaluation of coefﬁcients, 114, 117, 124,

30 )

1

differentiability of, 112

functions express1blc by, 108

integrability of, 112

apecial cyclm exprcamble by, 122

tyﬁea of, 110

o gqange cosine series, 111 [k
all-range sme sories, 111
Whole-ra,nge gine-cosine sprtes \’flﬂb‘ au

Fourier’s mtegral 109, 112, 120 ~
Fowle, F. L.,
Freguency ooeﬂzment 157 \
Frequency chstrlbutlona nommfmﬁi 174

normal, s¢¢ Normal freqlSKth distribu-

tion

skewed, 171

test for suitability, of/ LS‘S

tests for normalitybefd77, 182
Fry, Thoreton . é;?:l 154, 3as
Funetional ta,blea

Galton's qul}%% %, 163
General Radio.Co. harmonic analyzer, 140

eometrie mean, 146
Geome 3 slope, 87

, DL C,
sk

n A. M., 338
mean, 195
of inconsistent means, 199
Graph paper, choice of, 38
]ogarlthmlc a6
polar, 36
probability, 36, 177, 181
rectangular, 36, 41
semi-log, 36
trilinear, 37
Graphiesl method of computing ecrrelation
cocfiicien t.s, 2485
of differentintion, 87
of evaluating oonsta.nts 64, 63
of integration, 08
of interpolaticn, 16

}mgx

of presenting data a5

INDEX

Graphical method, of testing the suitability
of a ra,tlonal eguation, 55
Graphs, advantages of, 20
gualitative, 29, 30
guantitative, 29, 36
preparation of, 38
purposes of, 29
Gregory-Newton formula, 92
Gregory-NQewton methed of interpelation,
0

+

Hagen's derivation of the normal law, 148

Hall, Harvy H., 141

Hai.hda,y, D., 174

Hardy, J. D., 47

Harmaonic analyzer Chubb, 134
General RRadio Co., 140 -
Henriei relling sphcm, 130
Johnson, 139
Marrison, 136
mechanical, 134
nonmechanicsl, 135
Wente, 137

Haynes, F. B, 98 %7

Haymes, I. ., 98\,

Hecht, 8., 45, 3L\174

Henrici har TN a.na.lyzer. 130

Herrmgton, ~I< I,
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ool
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Index of\ggwela.t.wn 287
Intepratio
ayerage ordinate method, 101
. cat-and-weigh method, 103
R Jgraphicnl methods, 08
y photoelectric method 103
polar planimeter method 9%
qﬂ/"i rule, 95,.97
pso s 84 rule, a5, 97
tabulsr methoda, 94
trapezoidal rale, B4, 47
Weddle's rule, 96 97
Interpolztion, 16
equation method, 18
graph method, 16
Grcgury—Newton method 17
Lagrange method, 2
proportional part method 16
aylor’s series method, 23
Itemn differcnce method of smoothing, 7
Ttew differences, 7, 15
Items in tuhles, 5

Jaeger, F. M., 8, 9, 10
Johnaon, V. 0., 139
harmonic analyzer, 130

Kerchner, B, H., 10’9 124
Kineer, J. B, 32

Lagrange method of Hlt»()rpl:ll&tlon 20
Least count, 147
Least squares, 141
basig of, 163
equations, 238
applied to smoothing data, 251
closeness of fit of, 260
for relations other than power 8eries,
255
linear, 239, 246, 25%
nonlinesr, 245
pu_ra,bolm, 250
probable errors of the constants of, 249
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Least squares, equations (conttnued)
shorteried computations far, 76, 243
the polynomial, 252
ttif Em-:} curve, 256
method o Smouthl , T 251
Leland, . M., 338 e
Lewis, B 268
Line of regressxon 284, 286
Lipka, J., 65, 91, 129, 338
Logarithmic graph paper, 36
Lowan, A. N., 96

Marrison, W, A., 136
harmonic analyzer 136
Marshall, W. (0, 338
\-fut.uscha.k Margaret 252, 387
Means, a.uthmetm, 5ee Anthmetw meang
genmetrlc. 146
grand, 195
incongistent, 197
root mean pguare, 146
Mechagilcul devices, for differentiation, 89,
for Fourier series analysis, 130
for iIntegration, 98
Median, 146
Mellor, J. W., 838
Merriman, M., 338
Methods, of - adjustment of conditioned
measurements, 216
of computing correlation eoeflicients, 275,
276, 285
of computing Fourier eeries coefficients,

]

of comnputing least squaros equa.tmns 239’

of computing means, 168,

of differentiation, 35

of evaluating arbits 'ary constants, 64 ~238

of integration, 94

of interpolation, 16 N

of stnoothing, 7 - ’\
Meyers, C. H., 73 A
Michelson, A.'A., 185 \\
Miller, 13, C,, 134 FLY I
Mills, F. C., 838 . .

Maode, 146 .

Mudulus of preclmun, i‘51 157 : #ee alzo Pre-
cision ind

\iontgomery,}i[ C 137

Nomograrmy \&

Non-harmoui panodm functions, see Pe-

Ilbd!(} functiona 110[1-11&1‘1:101‘11(,
Normgh équations, 217
Normelirequency distribution, 146

Hagen's derivation of, 145

jHstifieation of, 175

limitations of, 171

normalization of, 155

tabular 1ep1~eaentﬁ.’taons of, 158
Normal method of finding dz,.r/ dzx, 87
Normslity of & -distribution, qualitative

teats for, 177
quentitative tests for, 182

Opive curve, 179
Oshorne, N. 8., 73, 268

Paliner, A. D., 338 .
Pearson, F., 185
Pearson, K., 184, 338
product moment formuls, 275
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Pense, F. G, 185
Teriodie funot,mns harmonir, se¢ Fourier
geries
non-harmonijc, 294

2nalyaig of, 204
determmatwn of amplitudes of, 304
determination of periods of, 208
determination of phase constants of,

Photocloctric method, of Fourier series anal-
¥yain, 136
of integration, 103
FPhysical alope, &7
Pirenne, M. H., 45, 174 4
Plane of regression, 288 N\
Planimeter, 160
batchet, b8 A\
polar, 98 ¢\
Poisson frequency distributiondaw, 174
FPolar gruph paper, 36 N
Polar planimeter, 98
Preaasu%r% g1|r:ud|3:-.cee3, of ad;uﬁteﬂ’ obaervations,

of arbitrary eonstafta, 79 249

of correlation coéfficients, 281

of equally weighted measurements, 157
quantitativesevaluation of, 166
relative éﬁecnveness of, 168
short, method of computmg, 168

of gra;‘sLﬂmana 195

of\heans, 193

of pretizion indexes, 196

of m1gqually weighted messyrements,

LR 3]
3 ghort method of cormputing, 104
prupagahon of, 205

wrhrwr . d bor-plakidd nmqmngmm 212

law of, 208
Pmbab]hty coefficient, 149, 157, 160
Probability graph paper, 36, 177, 181
Prohabhility of oceurrence of a deviation be-
tweean limits, 151, 160
Probable errar, 157; aee also Precimon in-
dexes
Produet moment formula, 275
Propapation of precision indexes, see Preci-
sion indexes, propagation of
Proportionzal part methed of interpolation,
16, 18

Pugh, E. M., 253

Qualitative grapha, 26, 30

Qualitative tables, 2

Qualitative tests for normality of a fre-
quency distribution, 177, 182

Quantitative graphs, 29, 36

" Quantitative test for mrmahty of a fre-
quency distribution, 182

Quinennx, 153

Raiional equations, 56
Reetangular graph paper, 36, 41
Regression ¢urve, 287
Regression h{)es. 228358
Regression plane,

Robinson, £ 16, 274, 338
Roebuck, J. B 26 27, B4
Roesger, W. F., 83

Root mean square mean, 146
Rossini, F. D., 197, 198, 338
Roundmg off numbers 13

Running, T. R., 65, 139, 338
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Batterly, 338
Bears, F. W., 08
Secant method of finding dy/daz, O
Belected-paints method of finding equa-
tions, 68, 77, 315
SBermni-log graph paper, 36
Series, I'ourier, see Fourier series
Shaler, 8., 45, 174
Bhea, J. D., 252, 337
Bignificant figures, 11, 79
Bimons, H. ., %9
Simpson’s %é rule, 45, 47
Simpson’s 44 rale, 95, 97
Skewness, 1582
Slope of a curve, determination of, see 13if-
ferentiation
geometrie, 87
physieal, 87
Smoothing, 6
graphical method, 7
item difference method, 7
least-squares method, 7, 251
Bguint test for smoothness of a curve, 49, 88
Btundard deviation, 157; ses also Precigion
indexes
Standard error of estimate, 273
Btutistical tables, 2, 4
Htevens, J, 8., 388
Btimson, H, I, 268
Straight-line gra.ph method of finding equa-
“tions, 64, E‘m
Btub of » table, 5
Buccessive approximations method of find-
ing equations, 76

Tuhbles, 1 A
advuntages of, 2
functional, 2, &
gualitative, 2 ~
statistical, 2, 4 a
types of, 2 N

Tabular differences, 7, 15 ¢ \J

Tabular methods, of d1ﬁ'ereﬁ¢\§tmn 92
ol integration, 94

INDEX

Talular methods, of obtaining Fourier
peries coefficients, 124
of testing the suitability of an empiriral
cgquation, 60
Tabulation, abbreviated forms of, 13; see
alzo Tables
Tangent method of finding dy/dx, 87
Tangentmaoter, 89
Taylor, H, 0., 129
Taylor's aeries methed of interpolation, 23
Tasty, for congistency of means, 19%
for normality of a frequency distribution,
177, 182
for smnitability of an assumed frequeney
distribution, 182 7\
for su1ta.l)1ht.y of an cmpirjeal equatwn,

, B0
Title of w table, 4 28 \
Trapesoidal rule 04, oy N\
Trilinear graph papc.r, 37 { \.
Tuekerman, L. B., 261, -368
Tuttle, L., 338

Voa Elbe, G., 268 2° ~';
\\

Watson, B, M S5,
%“Vcddle 8 rule, BN BT
eights, B8
and pref 3\.}11 indexes, 1
impli by a change Of vauablcs 247
WeldW Ty 338
Wensely . T 261, 338
Wente, 'E. (,, 137
echarmonie analyzer, 137
3 Whl‘t.takel‘ s T, 16, 274, 338
»\’\roodward K. % 338

WWW. dbz'aulnb“wghMg,inG 27, 83, 230, 269

w-ittterval, ehoice of, 6

Yoe, ). H,, 337

z-function, Fisher's, 281
Zero-sumn rethod of finding equations, 73



ANSWERS TO PROBLEMS

Chapter I, p. 26
0. 0.43, 0.60. 6. 0.460, 0.345, 7. 0.147. N\
Chapter III, p. 83 “g‘\t&?
1. y = 1.0003¢0-815¢ 22 08, 01815 day~L, 3,82 days. AN
3. pipn = (T/To)t . ,~,'\\~
,\,\‘..
) Chapter IV, p. 105 .\{:}
2. 12.3, 9.9, 8.5. N\
] x'\\"
Chapter V, p. 145\"
4
1l y =§1r +E——00¢:m9-—2;2&1{{18
4
2y =57 +Z —+«rcasi‘fﬁ’ﬂf‘¥dfhimawmgm
E 2K
3.y=_+ F mnm@t m, odd only
2 T ¢ AT
2E 3F 2 1 4 1 8 10r )
e A Wi ST ran b -gin—t +osin—t+
4. y 3 2r(s¢}rTé+2ﬁlnT +4SIIIT + = T
T PN 8 1 1ox
-—\/E 005271- ..-r‘f L-I' Oﬁ_rf__C(’ST_t+‘..)'
2 K 7o i) T 5 T
win @ sin36  sin 58 .
0 W B
NN B 1 2
im0 — e — s — 5= 520 — — — cus 30
\“gy 8 "L T :
91 22 1
i cos Hf . cos B0 — ——cos T8 — -,
o T

1 mw
z —_ — - me | ; m, odd only.
7. y_\/_w [zsm 4sn:rmﬂ—{-(m:oa4 l)cos :I m ¥
9, 6.37 sin (B — 145.9“}.

Chapter VI, p. 166
b. 43 % 1075, 7.1 X 105 T. 0.162, 0.0325.
8. 9% 10754, 7.8 X 103471, 90.0%.
343



344 ANSWERS TO PROBLEMS

Chapter VII, p. 187

1. 0.0008g’, 0.00104°, 0.0013¢', 0.00185". 2. 0.098 see, 0.116 see, 0.144 seq,
(.204 sec. 6. 52,40 °F, 0.OTF°, 1.4 F° 19F° 559, 5158°F < I' < 53340°F
7. 309, to 409, depending on details of procedure.

Chapter VIII, p. 203

1. 9.98 £ 0.03 gm. 3. (o 2nd ap) 273.150 £ 0.005° K, (e,) 273.154 + 0.008° K,
(ozp) 273,143 + 0.004° K.
O\
Chapter IX, p. 214
1, 0.06 mm. 3. 0.49%, 3.0%, 1.0%, 2.5%. 5. 0.5K°; '2¢2K° 6.5K°.
T. 273.45 £ 0.06 mm, 9.05107 < 0.00007 mm2 2191 + 0.3 m{rfsl 192‘3 + .03
gm,em?, 8. A%sumc the two 80°45'30" readings to be mdependent 1.66693 +
0.00005, 9. 01946 x 0.0003, 0.01458 -+ 0.00008. o\
¢*{)

Chapter X, p. 236

1. 1007 ft, 500.3 ft, 151.1 {5, 79.9 £, 1.4 ft,.\J2. 60°0.6', 60°0.4", 59°50.0,
3. 0.0656 mm, 0.216 mm, 0,256 mm. 4. 0.2 c;l/(gm C®), 0.1918 cal/(gm C®),
1418 5. 8,030 & 170 cal, 15,300 < 170.041)

cnaptgefxx p. 266

L 647 X 107 erg sec, ﬁ 23 %X 1077 Ko 4 133.72 X 1077
?E:n% b 13:5@
p/(m-Hg K, 273,174 + 003° Ko’ ®, ¢ = 1 oosgcal/(gm Co, b = —405.5 X 1078

cal/(gm C™%), ¢ = +8.371 X 103" oal/(gm0°3) d = —0.03398 > 10~% cal/(gm C"4).

100
9 log—=2 = ~6.58 ) ,AH = — op
o —{éﬁp T q 86,100 K° R
11, 78°4%, 1'4"55",
'C\ Chapter XiI, p 291
1 93%., .“2 97%, less than 195, 99.5%. 3. 91%,
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